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POLYNOMIAL IDENTITY RINGS AND GROUPRINGS 

  PREETI PANWAR ,Assistant Professor In Mathematics 

  GURU NANAK KHALSA COLLEGE ,KARNAL 

Abstract: In this paper,we prove the sufficient condition for group rings to satisfy a polynomial 

identity. Firstly we define groupring and standard polynomial identity in polynomial ring 

𝐾 𝑋1, 𝑋2 , …   over field K with noncommuting indeterminates 𝑋1, 𝑋2 , … . 

Introduction: Let K be a field and G be a multiplicative group. Let K[G] denote the set of all 

formal sums k= 𝑘𝑔𝑔∈𝐺 𝑔 , where 𝑘𝑔 ∈ 𝐾 for every g∈ 𝐺 and the set  𝑔 ∈ 𝐺/𝑘𝑔 ≠ 0  is finite. 

For k= 𝑘𝑔𝑔∈𝐺 𝑔 and s= 𝑠𝑔𝑔∈𝐺 𝑔 belonging to K[G],define k+s=   𝑘𝑔 + 𝑠𝑔 𝑔∈𝐺 . This defines 

addition in K[G] with respect to which K[G] becomes an abelian group. Again for 𝛼 ∈ 𝐾 and 

k= 𝑘𝑔𝑔∈𝐺 𝑔 ∈ 𝐾[𝐺], we define 𝛼𝑘 =   𝛼𝑘𝑔 𝑔𝑔∈𝐺 . With respect to this scalar multiplication, 

K[G] is vectorspace over K. For  k= 𝑘𝑔𝑔∈𝐺 𝑔 and s= 𝑠𝑕𝑔∈𝐺 𝑕 ,define 𝑘𝑠 =  𝑡𝑙𝑙∈𝐺 𝑙 where 

𝑡𝑙 =  𝑘𝑔𝑠𝑕𝑔𝑕=𝑙  and the elements of G commutes with the elements of K. With the 

multiplication as defined above, K[G]becomes a ring. Hence K[G] is an algebra over the field K 

and is called group ring over K. 

                         Next we define polynomial identity. Let 𝐾 𝑋1, 𝑋2, …   be the polynomial ring over 

a field 𝐾 in the noncommuting indeterminates 𝑋1, 𝑋2 , … . An algebra 𝐸 over 𝐾 is said to satisfy a 

polynomial identity,if there exists 𝑓 𝑋1, 𝑋2 , … , 𝑋𝑛 ∈ 𝐾 𝑋1, 𝑋2 , …  , 𝑓 ≠ 0 ∀𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝐸. 

For example,any commutative algebra satisfies 𝑓 𝑋1, 𝑋2 = 𝑋1𝑋2 − 𝑋2𝑋1. 

  The standard polynomial of degree n is defined by 

   𝑋1, 𝑋2 , … , 𝑋𝑛  =  −1 𝜎
𝜎∈𝑆𝑛

𝑋𝜎 1 , 𝑋𝜎 2 , … , 𝑋𝜎 𝑛 . 

Here 𝑆𝑛  is the symmetric group of degree n on the set 𝑆 =  1,2, … , 𝑛  and  −1 𝜎  is 1 or -1 

according as 𝜎 is an even or an odd permutation. We will also use 𝑠𝑛 𝑋1, 𝑋2, … , 𝑋𝑛  to denote 

this polynomial. 

Theorem 1.Let the group G have an abelian subgroup A such that  𝐺: 𝐴 = 𝑛 < ∞ .Then 𝐾[𝐺] 

satisfies the standard polynomial identity of degree 2m. 

Proof . Let 𝑥1, 𝑥2,…,𝑥𝑛  be a set of right coset representatives for A in G. Let E=K[A] andV=K[G]. 

Since A is abelian therefore Eis commutative algebra. Clearly Vis left E-module. Since G is a basis 

of K[G] over the  
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field K and 𝐺 =  𝐴𝑥𝑖
𝑛
𝑖=1  therefore  𝑥1, 𝑥2, … , 𝑥𝑛  is a basis of V over E. Now V is also a right 

K[G]-module and as such it is faithful. 

          Let 𝐸𝑛 = 𝑀𝑛 𝐸  be the ring of all 𝑛 × 𝑛 matrices over 𝐸. We define : 𝐾 𝐺 →

𝐻𝑜𝑚𝐾 𝐴  𝐾 𝐺 , 𝐾 𝐺  = 𝑅 𝑏𝑦 𝜙 𝑢 = 𝑇𝑢  𝑤𝑕𝑒𝑟𝑒 𝑇𝑢 : 𝐾 𝐺 → 𝐾 𝐺  is defined by 𝑣T𝑢 =

𝑣𝑢 ∀ 𝑣 ∈ 𝐾[𝐺] . Let 𝜙 𝑢 = 0 for some 𝑢 ∈ 𝐾 𝐺 , which implies 𝑇𝑢 = 0 and ∴ 𝑣𝑢 = 0 ∀ 𝑣 ∈

𝐾 𝐺 . Hence 𝑢 ∈ 𝐴𝑛𝑛 𝐾[𝐺] = 𝐴𝑛𝑛 𝑉 = 0 . Therefore 𝜙 is one-one. Hence 𝑉 = 𝐾 𝐺 ≅

𝜙 𝑉 ⊆ 𝐻𝑜𝑚𝐸 𝑉, 𝑉 = 𝑅. Define 𝜙: 𝑅 → 𝑀𝑛 𝐸 = 𝐸𝑛  as follows. 

      Let 𝑇 ∈ 𝑅 then 𝑥𝑖𝑇 ∈ 𝑉. Since  𝑥1, 𝑥2, … , 𝑥𝑛   is a basis of 𝑉 over  𝐸 therefore there exist  

𝑎𝑖1 , 𝑎𝑖2 , … , 𝑎𝑖𝑛 ∈ 𝐸 such that 𝑥𝑖𝑇 =  𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗 =1 . We define 𝜙 𝑇 = 𝑚 𝑇  𝑤𝑕𝑒𝑟𝑒 𝑚 𝑇 =

 𝑎𝑖𝑗  𝑛×𝑛
∈ 𝐸𝑛 . It is easy to see that 𝜙 is an algebra isomorphism and hence ⊆ 𝑅 ≅ 𝐸𝑛  . Now 

define a map 𝑓: 𝐸 × 𝐾𝑛 → 𝐸𝑛 𝑏𝑦 𝑓 𝑎, 𝐴 = 𝑎𝐴 𝑤𝑕𝑒𝑟𝑒 𝐾𝑛 = 𝑀𝑛 𝐾 . Let 𝐹(𝐸, 𝑀𝑛 𝐾  be a free 

𝑍-module on 𝐸 × 𝐾𝑛  and 𝐺 𝐸, 𝐾𝑛  be the submodule of 𝐹 𝐸, 𝐾𝑛  generated by the elements 

of the form 

i)  𝑎1 + 𝑎2, 𝐴 −  𝑎1, 𝐴 −  𝑎2, 𝐴  

ii)  𝑎, 𝐴 + 𝐵 −  𝑎, 𝐴 −  𝑎, 𝐵  

iii)  𝑎𝑏, 𝐴 −  𝑎, 𝑏𝐴  where 𝑎1, 𝑎2 , 𝑎𝑛 , 𝑎, 𝑏 ∈ E; 𝐴, 𝐵 ∈ 𝐾𝑛. 

Extend the map to a 𝑍-homomorphism 𝑓 of 𝐹 E, K𝑛  into 𝐸𝑛  which clearly vanishes on 

𝐺 𝐸, 𝐾𝑛  and therefore induces a 𝑍- homomorphism 𝑓: 𝐸 ⊗ 𝐾 → 𝐸𝑛  given by ( 𝑎𝑖 ⊗ 𝐴𝑖 =

 𝑎𝑖𝐴𝑖  . Define 𝑔: 𝐸𝑛 → 𝐸 ⊗ 𝐾𝑛  by 𝑔 𝐴 = 𝑔  𝑎𝑖𝑗 𝑒𝑖𝑗𝑖 ,𝑗  =  𝑎𝑖𝑗𝑖 ,𝑗 ⊗ 𝑒𝑖𝑗  where 

𝐴 = [𝑎𝑖𝑗 ] ∈ 𝐸𝑛  and  𝑒𝑖𝑗   are the matrix units in 𝐸𝑛  then it is easy to see that 𝑔 is a 𝑍-

homomorphism. Now  𝑓𝑜𝑔  𝐴 = 𝑓 𝑔 𝐴  = 𝑓  𝑎𝑖𝑗 ⊗ 𝑒𝑖𝑗𝑖 ,𝑗  =   𝑎𝑖𝑗 𝑒𝑖𝑗𝑖 ,𝑗 = 𝐴 where 

𝐴 = [𝑎𝑖𝑗 ] ∈ 𝐸𝑛 . Hence 𝑓𝑜𝑔 = 𝐼𝐸𝑛
. Also it 𝑎𝜎 1 ⊗ 𝐴𝜎 1   is easy to see that 𝑔𝑜𝑓 = 𝐼𝐸⊗𝐾𝑛 . 

Hence ⊗ 𝐾𝑛 ≅ 𝐸𝑛  . Thus 𝐾[𝐺] ⊆ 𝐸 ⊗ 𝐾𝑛.By the result “𝐾𝑚 , the ring of all 𝑚 × 𝑚 matrices 

over a field K, satisfies the standard polynomial identity of degree 2𝑚”, 𝐾𝑛  satisfies 𝑠2𝑛 . 

We prove that 𝐸 ⊗ 𝐾𝑛 also satisfies 𝑠2𝑛 . Let 𝑎1 ⊗ 𝐴1, 𝑎2 ⊗ 𝐴2, … 𝑎2𝑛 ⊗ 𝐴2𝑛 ∈ 𝐸 ⊗ 𝐾𝑛  

then 

𝑠2𝑛 𝑎1⊗𝐴1 ,𝑎2⊗𝐴2 ,…𝑎2𝑛⊗𝐴2𝑛  =   −1 𝜎 𝑎𝜎 1 ⊗ 𝐴𝜎 1   𝑎𝜎 2 ⊗ 𝐴𝜎 2  …

𝜎𝜖 𝑆2𝑛

 𝑎𝜎 2𝑛 ⊗ 𝐴𝜎 2𝑛   

                where 𝑆2𝑛  is symmetric group of degree 2n on set  1,2, … ,2𝑛 . 

                                                            = (−1)𝜎 𝑎𝜎 1 𝑎𝜎 2 …𝑎𝜎 2𝑛 ⊗ 𝐴𝜎 1 𝐴𝜎 2 …𝐴𝜎 2𝑛  𝜎∈𝑆2𝑛
 

Since E is commutative ring therefore 𝑎 = 𝑎1𝑎2 …𝑎2𝑛 = 𝑎𝜎 1 𝑎𝜎 2 …𝑎𝜎 2𝑛 ∀𝜎 ∈ 𝑆2𝑛 . 
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𝑠2𝑛 𝑎1⊗𝐴1 ,𝑎2⊗𝐴2 ,…𝑎2𝑛 ⊗𝐴2𝑛  =  (−1)𝜎 𝑎 ⊗ 𝐴𝜎 1 𝐴𝜎 2 …𝐴𝜎 2𝑛  

𝜎∈𝑆2𝑛

 

                                                                                    = 𝑎 ⊗  (−1)𝜎
𝜎∈𝑆2𝑛

𝐴𝜎 1 𝐴𝜎 2 …𝐴𝜎 2𝑛  

                                                                                       = 𝑎 ⊗ 𝑠2𝑛 𝐴1, 𝐴2, … 𝐴2𝑛  

Since 𝐾𝑛 satisfies 𝑠2𝑛  therefore 𝑠2𝑛 𝐴1 ,𝐴2 ,…,𝐴2𝑛  = 0 and hence 𝑠2𝑛 𝑎1⊗𝐴1 ,𝑎2⊗𝐴2 ,…𝑎2𝑛 ⊗𝐴2𝑛  =0  . 

             Thus 𝐸 ⊗ 𝐾𝑛  satisfies 𝑠2𝑛  and the result follows. 
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