POLYNOMIAL IDENTITY RINGS AND GROUPRINGS

PREETI PANWAR, Assistant Professor In Mathematics

GURU NANAK KHALSA COLLEGE ,KARNAL

Abstract: In this paper, we prove the sufficient condition for group rings to satisfy a polynomial identity. Firstly we define groupring and standard polynomial identity in polynomial ring $K[X_1, X_2, ...]$ over field K with noncommuting indeterminates $X_1, X_2, ...$

Introduction: Let K be a field and G be a multiplicative group. Let K[G] denote the set of all formal sums $k=\sum_{g\in G}k_g g$, where $k_g \in K$ for every $g\in G$ and the set $\{g\in G/k_g \neq 0\}$ is finite. For $k=\sum_{g\in G}k_g g$ and $s=\sum_{g\in G}s_g g$ belonging to K[G], define $k+s=\sum_{g\in G}(k_g + s_g)$. This defines addition in K[G] with respect to which K[G] becomes an abelian group. Again for $\alpha \in K$ and $k=\sum_{g\in G}k_g g \in K[G]$, we define $\alpha k = \sum_{g\in G}(\alpha k_g)g$. With respect to this scalar multiplication, K[G] is vectorspace over K. For $k=\sum_{g\in G}k_g g$ and $s=\sum_{g\in G}s_h h$, define $ks = \sum_{l\in G}t_l l$ where $t_l = \sum_{gh=l}k_g s_h$ and the elements of G commutes with the elements of K. With the multiplication as defined above, K[G] becomes a ring. Hence K[G] is an algebra over the field K and is called group ring over K.

Next we define polynomial identity. Let $K[X_1, X_2, ...]$ be the polynomial ring over a field K in the noncommuting indeterminates $X_1, X_2, ...$ An algebra E over K is said to satisfy a polynomial identity, if there exists $f(X_1, X_2, ..., X_n) \in K[X_1, X_2, ...], f \neq 0 \forall \alpha_1, \alpha_2, ..., \alpha_n \in E$.

For example, any commutative algebra satisfies $f(X_1, X_2) = X_1X_2 - X_2X_1$.

The standard polynomial of degree n is defined by

 $[X_1, X_2, \dots, X_n] = \sum_{\sigma \in S_n} (-1)^{\sigma} X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(n)}.$

Here S_n is the symmetric group of degree n on the set $S = \{1, 2, ..., n\}$ and $(-1)^{\sigma}$ is 1 or -1 according as σ is an even or an odd permutation. We will also use $s_n(X_1, X_2, ..., X_n)$ to denote this polynomial.

Theorem 1.Let the group G have an abelian subgroup A such that $[G:A] = n < \infty$. Then K[G] satisfies the standard polynomial identity of degree 2m.

Proof. Let $x_1, x_{2,...,} x_n$ be a set of right coset representatives for A in G. Let E=K[A] andV=K[G]. Since A is abelian therefore Eis commutative algebra. Clearly Vis left E-module. Since G is a basis of K[G] over the

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com Page 243

field K and $G = \bigcup_{i=1}^{n} Ax_i$ therefore $\{x_1, x_2, ..., x_n\}$ is a basis of V over E. Now V is also a right K[G]-module and as such it is faithful.

Let $E_n = M_n(E)$ be the ring of all $n \times n$ matrices over E. We define $: K[G] \to Hom_{K[A]}(K[G], K[G]) = R$ by $\phi(u) = T_u$ where $T_u: K[G] \to K[G]$ is defined by $vT_u = vu \forall v \in K[G]$. Let $\phi(u) = 0$ for some $u \in K[G]$, which implies $T_u = 0$ and $\therefore vu = 0 \forall v \in K[G]$. Hence $u \in Ann(K[G]) = Ann(V) = 0$. Therefore ϕ is one-one. Hence $V = K[G] \cong \phi(V) \subseteq Hom_E(V, V) = R$. Define $\phi: R \to M_n(E) = E_n$ as follows.

Let $T \in R$ then $x_i T \in V$. Since $\{x_1, x_2, ..., x_n\}$ is a basis of V over E therefore there exist $a_{i1}, a_{i2}, ..., a_{in} \in E$ such that $x_i T = \sum_{j=1}^n a_{ijx_j}$. We define $\phi(T) = m(T)$ where $m(T) = [a_{ij}]_{n \times n} \in E_n$. It is easy to see that ϕ is an algebra isomorphism and hence $\subseteq R \cong E_n$. Now define a map $f: E \times K_n \to E_n$ by f(a, A) = aA where $K_n = M_n(K)$. Let $F(E, M_n(K))$ be a free Z-module on $E \times K_n$ and $G(E, K_n)$ be the submodule of $F(E, K_n)$ generated by the elements of the form

i)
$$(a_1 + a_2, A) - (a_1, A) - (a_2, A)$$

ii)
$$(a, A + B) - (a, A) - (a, B)$$

iii) (ab, A) - (a, bA) where $a_1, a_2, a_n, a, b \in E; A, B \in K_n$.

Extend the map to a Z-homomorphism f of $F(E, K_n)$ into E_n which clearly vanishes on $G(E, K_n)$ and therefore induces a Z-homomorphism $f: E \otimes K \to E_n$ given by $(\sum a_i \otimes A_i = \sum a_i A_i \cdot Define \ g: E_n \to E \otimes K_n$ by $g(A) = g(\sum_{i,j} a_{ij} e_{ij}) = \sum_{i,j} a_{ij} \otimes e_{ij}$ where $A = [a_{ij}] \in E_n$ and $\{e_{ij}\}$ are the matrix units in E_n then it is easy to see that g is a Z-homomorphism. Now $(f \circ g)(A) = f(g(A)) = f(\sum_{i,j} a_{ij} \otimes e_{ij}) = \sum_{i,j} a_{ij} e_{ij} = A$ where $A = [a_{ij}] \in E_n$. Hence $f \circ g = I_{E_n}$. Also it $(a_{\sigma(1)} \otimes A_{\sigma(1)})$ is easy to see that $g \circ f = I_{E \otimes K_n}$. Hence $\otimes K_n \cong E_n$. Thus $K[G] \subseteq E \otimes K_n$. By the result " K_m , the ring of all $m \times m$ matrices over a field K, satisfies the standard polynomial identity of degree 2m", K_n satisfies s_{2n} .

We prove that $E \otimes K_n$ also satisfies s_{2n} . Let $a_1 \otimes A_1, a_2 \otimes A_2, \dots a_{2n} \otimes A_{2n} \in E \otimes K_n$ then

$$s_{2n(a_1\otimes A_1,a_2\otimes A_2,\ldots,a_{2n}\otimes A_{2n})} = \sum_{\sigma\in S_{2n}} (-1)^{\sigma} (a_{\sigma(1)}\otimes A_{\sigma(1)}) (a_{\sigma(2)}\otimes A_{\sigma(2)}) \dots (a_{\sigma(2n)}\otimes A_{\sigma(2n)})$$

where S_{2n} is symmetric group of degree 2n on set $\{1, 2, ..., 2n\}$.

$$= \sum_{\sigma \in S_{2n}} (-1)^{\sigma} \left(a_{\sigma(1)} a_{\sigma(2)} \dots a_{\sigma(2n)} \otimes A_{\sigma(1)} A_{\sigma(2)} \dots A_{\sigma(2n)} \right)$$

Since E is commutative ring therefore $a = a_1 a_2 \dots a_{2n} = a_{\sigma(1)} a_{\sigma(2)} \dots a_{\sigma(2n)} \forall \sigma \in S_{2n}$.

$$s_{2n(a_1 \otimes A_1, a_2 \otimes A_2, \dots, a_{2n} \otimes A_{2n})} = \sum_{\sigma \in S_{2n}} (-1)^{\sigma} (a \otimes A_{\sigma(1)} A_{\sigma(2)} \dots A_{\sigma(2n)})$$
$$= a \otimes \sum_{\sigma \in S_{2n}} (-1)^{\sigma} A_{\sigma(1)} A_{\sigma(2)} \dots A_{\sigma(2n)}$$
$$= a \otimes s_{2n} (A_1, A_2, \dots, A_{2n})$$

Since K_n satisfies s_{2n} therefore $s_{2n(A_1,A_2,\dots,A_{2n})} = 0$ and hence $s_{2n(a_1 \otimes A_1,a_2 \otimes A_2,\dots,a_{2n} \otimes A_{2n})=0}$.

Thus $E \otimes K_n$ satisfies s_{2n} and the result follows.

REFERENCES:

- **1.** Connel,I.G. On the group rings.
- 2. Herstein,I.N. Non Commutative rings.
- **3.** Lam,T.Y. Non Commutative rings.
- **4.** Passman, D.S. Infinite Group rings.
- 5. Passman,D.S. The Algebraic Structure of Group Rings.
- 6. Macdonald, I.D. Theory of Groups.