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ABSTRACT 

This paper constitutes an effort towards the generalization of the most common classical iterative 

methods used for the solution of linear systems (like Gauss–Seidel, SOR, Jacobi, and others) to the 

solution of systems of nonlinear algebraic and/or transcendental equations, as well as to unconstrained 

optimization of nonlinear functions. Convergence and experimental results are presented. The proposed 

algorithms have also been implemented and tested on classical test problems and on real-life artificial 

neural network applications and the results to date appear to be very promising.  

1. INTRODUCTION 

An iterative strategy to settle the straight 

framework Hatchet = b begins with an 

underlying estimate x0 to the arrangement x 

and creates a succession of vectors ,xk -∞ k=0 

that focalizes to x. Iterative techniques include a 

procedure that changes over the framework 

Hatchet = b into an identical arrangement of 

the shape x = Mx + v, for some settled network 

M and vector v. After the underlying vector, x0, 

is chosen, the arrangement of estimated 

arrangements is produced by registering 

xk+1 = Mxk + v,  

for every k = 0, 1, 2,....  

For huge frameworks containing a large number 

of conditions, iterative techniques often have 

unequivocal focal points over direct strategies 

as far as speed and requests on PC memory. 

Once in a while, if the precision necessities are 

not stringent, a humble number of cycles will 

suffice to create a satisfactory arrangement. 

Additionally, iterative strategies are often 

extremely effective for inadequate frameworks 

issues. In meager issues, the nonzero 

components of an once in a while put away in a 

scanty stockpiling group. In other case, it is not 

important to store A by any means; for 

instance, in issues including the numerical 

arrangement of fractional differential 

conditions as, for this situation, each column of 

A may be produced as required yet not held 

after utilize [1]. Another critical favorable 

position of iterative strategies is that they are 

typically steady, and they will really hose 
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mistakes, because of round off or minor 

bungles, as the procedure proceeds. 

2. UNCONSTRAINED OPTIMIZATION OF 

NONLINEAR FUNCTIONS 

It is well-known that a minimize x∗ of a 

continuous differentiable function f should 

satisfy the necessary conditions:  

∇f  x∗ = Θn = (0, 0,..., 0). (3) Eq. (3)  

Represents a set of n nonlinear equations which 

must be solved to obtain x∗. Therefore, one 

approach to the minimization of the function f 

is to seek the solutions of the set of Eq. (3) by 

including a provision to ensure that the solution 

found does, indeed, correspond to a local 

minimizer. This is equivalent to solving the 

following system of equations: 

∂1f (x1, x2,...,xn) = 0, 

∂2f (x1, x2,...,xn) = 0, . . . 

∂nf (x1, x2,...,xn) = 0, 

Where ∂if (x1,...,xi,...,xn) means the halfway 

subsidiary of f regarding the ith parameter. 

Next, we consider the classes of nonlinear 

Jacobi and nonlinear SOR techniques connected 

to framework [2].  

The composite nonlinear Jacobi technique and 

its merging the class of nonlinear Jacobi 

strategies is broadly utilized for the numerical 

arrangement of framework [3]. The 

fundamental element of the nonlinear Jacobi 

process is that it is a parallel calculation, i.e., it 

applies a parallel refresh of the factors. 

Beginning from a self-assertive introductory 

vector x0 ∈ D, one can subminimize at the kth 

emphasis the capacity:  

f xk 1 ,...,xk i−1, xi, xk i+1,...,xk n , (5) along the 

ith heading and get the comparing 

subminimizerxˆi. Clearly for the subminimizerxˆi 

∂if xk1,...,xk i−1, xˆi, xk i+1,...,xk n = 0.  

This is a one-dimensional subminimization since 

every one of the segments of the vector xk , 

with the exception of from the ith part, are kept 

consistent. At that point the ithpart is refreshed 

by the condition: xk+1 i = xk i + τkxˆi − xki ,for 

some unwinding component τk . The target 

work in [4] is subminimized in parallel for all i. 

Different composite nonlinear Jacobi preparing 

calculations can be gotten relying upon the 

onedimensional minimization strategy 

connected. It merits seeing that the quantity of 

the emphasess of the subminimization 

technique is identified with the asked for 

exactness in getting the subminimizer 

approximations. In this manner, critical 

computational exertion is required with a 

specific end goal to discover extremely precise 
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approximations of the subminimizer along 

every variable heading at every cycle [5].  

In addition, this computational exertion is 

expanded for issues with a high number of 

factors, as, when preparing neural systems with 

a few hundred system parameters (additionally 

called weights). Then again, it is not sure that 

this substantial computational exertion 

accelerates the minimization procedure for 

nonconvex capacities when a long way from a 

minimizer x∗. In this manner, we propose to get 

xˆi by limiting the capacity (5) with one 

emphasis of a subminimization strategy. Take 

note of that this practice is likewise 

recommended for the iterative arrangement of 

nonlinear conditions.  

By legitimately tuning the unwinding 

component τk , we can get better parameter 

repeats since this element characterizes the 

length of the minimization venture along the 

resultant hunt heading. In this manner, we can 

stay away from transitory motions and 

additionally to improve the rate of meeting 

when the present parameter vector is a long 

way from a minimizer. Next, the joining of the 

composite nonlinear Jacobi strategy is talked 

about. The joining investigation is created under 

suitable suspicions and gives helpful 

understanding into this class of strategies. The 

goal is to demonstrate that there is an area of a 

minimizer of the target work for which union to 

the minimizer can be ensured [6]. 

Hypothesis 1. Let f :D⊂Rn → R be twice 

constantly differentiable in an open 

neighborhood S0 ⊂ D of a point x∗∈ D for which 

∇f (x∗) = Θn and the Hessian, H (x∗) is certain 

clear with the property Aπ . At that point there 

exists an open ball  

S = S(x∗, r) in S0  

(where S(x∗, r) signifies the open ball focused at 

x∗ with sweep r), to such an extent that any 

grouping ,xk-∞ k=0 produced by the nonlinear 

Jacobi handle meets to x∗ which limits f . Proof. 

Consider the decay of H (x∗) into its corner to 

corner, entirely bring down triangular and 

entirely upper-triangular parts:  

H x∗ = D x∗ − L x∗ − L x∗ . (8)  

Since H (x∗) has the property Aπ , the 

eigenvalues of  

Φ x∗ = D x∗−1 L x∗L  x∗ 

Beneath we incorporate three calculations of 

this class. These calculations utilize an alternate 

stepsize for every parameter in view of 

customary one-dimensional minimization 

techniques. The first requires just the indication 

of the angle values, while the other two 

adventure both the capacity and slope values.  
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The multi-step Jacobi-altered division technique 

keeping in mind the end goal to figure a 

minimizer estimate xˆi in the interim *ai, bi+ we 

utilize our adjustment of the cut strategy which 

is quickly portrayed underneath. An answer of 

the condition ϕ(x) = 0, where the capacity ϕ : 

[a, b] ⊂ R → R is nonstop is ensured to exist in 

the interim (a, b) if the accompanying standard 

is satisfied:  

ϕ(a) ϕ(b) < 0, or sgn ϕ(a)sgn ϕ(b) = −1  

Where sign is the outstanding three esteemed 

sign capacity. This paradigm is known as 

Bolzano's presence foundation (for a 

speculation of this measure to higher 

measurements see [7]). In view of this 

foundation different root finding techniques, as, 

the separation strategy, were made. Here we 

might utilize the cut strategy which has been 

adjusted to the accompanying improved form 

depicted in [8]. There is accounted for that, 

keeping in mind the end goal to figure a 

foundation of ϕ(x) = 0 where ϕ :[a, b] ⊂ R → R 

is consistent, an improved adaptation of the 

separation technique prompts to the 

accompanying iterative equation:  

rp+1 = rp + c • sgn ϕ rp 2p+1 , p = 0, 1,..., log2(b 

− a)ε−1 , (9) with c = sgn ϕ(r0)(b − a), r0 = a,  

where ε is the required precision, and •defines 

the roof work. Obviously the emphases[9] 

merge to a root r∗∈ (a, b) with the end goal that 

|rp+1 − r∗| ε if for some rp, p = 1, 2,... , the 

accompanying holds: sgn ϕ r0 sgn ϕ rp = −1. 

Besides, the quantity of cycles ν, which are 

required in getting a rough root r to such an 

extent that |r − r∗| ε for some ε ∈ (0, 1) is given 

by:  

ν = log2(b − a)ε−1 .  

Rather than the iterative recipe we can likewise 

utilize the accompanying one:  

rp+1 = rp − c • sgn ϕ rp 2p+1 , p = 0, 1,..., log2(b 

− a)ε−1 , (11) where r0 = b.  

The composite nonlinear SOR plan and its 

merging Beginning from a discretionary 

introductory emphasize x0 ∈ D, the nonlinear 

SOR plot subminimizes at the kth cycle the 

capacity: f xk+1 1 ,...,xk+1 i−1 , xi, xk i+1,...,xk n , 

along the ith heading and acquire the 

comparing subminimizer xˆi. Again for this 

situation, the ith segment is refreshed by Eq. 

The principle distinction from the Jacobi plan is 

that the adjustment of the xi at the kth 

emphasis mulls over all the beforehand 

refreshed factors of a similar cycle. The joining 

result for the nonlinear SOR plan is as per the 

following: 

Theorem 3: If a quadratic function f (x) of 

dimension n is minimized sequentially, once 

along each direction of a set of n linearly 
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independent, conjugate directions, the global 

minimum of f will be located in n or less cycles 

independent of the starting point as well as the 

order in which the minimization directions are 

used.  

Theorem 4: The directions generated in 

Powell’s method are conjugate 

Theorem 5: The proposed method locates the 

minimum of an n-dimensional quadratic 

function f (x), in n or less iterations, utilizing 

only the relative size of the function values of f , 

independent of the starting point as well as the 

order in which the minimization directions are 

used. 

A strategy for developing globally convergent 

algorithms  

In this area we introduce a system for growing 

internationally merged calculations, i.e., 

calculations with the property that beginning 

from any beginning stage the succession of the 

repeats will join to a nearby minimizer of the 

goal work. This technique is like the nonlinear 

Jacobi approach, since it uses approximations of 

the subminimizers in each organize course, and 

is a parallel calculation. The hypothetical 

outcome introduced underneath, permits us to 

furnish the calculations with a system for 

adjusting the bearing of pursuit to a drop one. 

Along these lines, a diminishing of the capacity 

values at every emphasis is guaranteed, and 

merging to a nearby minimizer of the target 

capacity is acquired from remote beginning 

focuses [10]. 

 

3. NUMERICAL RESULTS 

the proposed algorithms have been tested on 

various problems of different dimensions and 

their performance has been compared with 

several well-known and widely used 

unconstrained minimization methods. The 

numerical applications studied here include 

classical test cases as well as real-life 

applications such as artificial neural network 

training. 

Classical test problems:The procedures 

described in Section 2.2.2, have been 

implemented and tested in two test functions. 

Our modified version of Powell’s method 

(SIGNOPT) has been compared with two other 

well-known minimization methods, namely 

Powell’s and Rosenbrock’s methods. To study 

the influence of imprecise information 

(regarding the values of the objective function), 

we simulate imprecisions with the following 

approach: information about f (x) is obtained in 

the form of f σ (x), where f σ (x) is an 

approximation to the true function value f (x), 

contaminated by a small amount of noise. For 
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the test problems, the reported parameters are: 

n, the dimension of the objective function; σ , 

the value of the standard deviation of the 

simulated noise; and x0 = (x1, x2,...,xn), the 

classical starting point for each function [11]. 

 

Table 1. Function evolutions (Broyden banded function) 

 

 

 

Neural networks training In order to train the network we have to find parameter values that minimize 

the following objective function: 

Table 2. Function evolutions (Hilbert function) 
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The parameters vki, bi, wij and τj can be 

subjective genuine numbers. Eq. (43) gives a 

distorted depiction of an organic neuron and it 

is generally used to develop manufactured 

neural systems. Illustrations utilized for 

preparing the system are displayed in a limited 

arrangement C = (c1, c2,...,cp) of  

 

input–output sets cp = (up, tp) where up can 

either be genuine or twofold esteemed info 

vectors in RK and tp are genuine or double yield 

vectors in RJ , for p = 1,...,P, deciding the 

comparing preparing design. Next, we [11] 

 

give quantitative outcomes applying different 

techniques in four neural system applications:  

 a variation of the Steepest Drop with 

consistent stepsize (SD);  

 the Steepest Plummet with Line Seek 

(SDLS) [14, p. 30];  

 an alteration of the Steepest Plummet 

with steady stepsize and Force (SDM);  

 a Versatile Steepest Plunge with 

heuristics for tuning the stepsize (ASD);  

 the Fletcher–Reeves (FR) technique;  

 the Polak–Ribiere (PR) strategy; 

 the Polak–Ribiere (PR) strategy obliged 

by the FR technique (PR–FR);  

 the Heuristic Jacobi–Newton strategy 

(HJN) of Eq. (16); (ix) the one-stage 

Jacobi with Netwon–Update strategy 

(JNU) of Eq. (25); and  

 the Multi-step SOR-adjusted separation 

strategy (m-SOR) of Eq. (30).  

Take note of that in the execution of FR, PR, PR–

FR, the line hunt of has been utilized. Strategies 

testing has been directed utilizing an 

arrangement of 1000 haphazardly picked 

introductory focuses. 
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Table 3. Result For the XOR problem (N=9) 

 

The XOR problem [18] The classification of the 

four XOR patterns in two classes is an 

interesting problem because it is sensitive to 

initial conditions as well as to stepsize 

variations, and presents a multitude of local 

minima. The binary patterns are presented to 

the network in a finite sequence C = (c1, 

c2,...,cp) of input–output pairs cp = (up, tp) 

where up are the binary input vectors in R2 

determining the binary input pattern and tp are 

binary output vectors in R1, for p = 1,..., 4, 

determining the corresponding number of 

patterns. A neural network with 9 variables is 

used for this classification task. The termination 

condition for all algorithms tested is to find a 

local minimizer with function value f  0.04. The 

results are summarized in Table 3, where µGRD 

denotes the mean number of gradient 

evaluations, µFE denotes the mean number of 

objective function evaluations required to 

obtain convergence, Success shows the number 

of successful simulations out of 1000 runs, i.e., 

in the successful runs the iterates converge to a 

minimizer with function value less than or equal 

to 0.04, and µASE is the mean number of 

algebraic sing evaluations required by the m-

SOR. In this case the number of successful runs 

is related to the local minima problem. Thus FR, 

PR and PR–FR usually converge to an undesired 

local minimum, i.e., a minimizer with function 

value f > 0.04 which means that some of the 

patterns are not correctly classified. HJN 

exhibits better performance than FR, PR and 

PR–FR with regards to the number of successful 

runs. HJN also outperforms SD, SDLS, SDM and 

FR in training speed, measured by the mean 

number of function and gradient evaluations 

needed to successfully classify the patterns. 

Note that PR and PR–FR require less function 

evaluations than HJN but they reveal a smaller 

number of successful runs. It is worth noticing 

that the m-SOR compares favorably to the 
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conjugate gradient methods in terms of 

successes. In addition, m-SOR does not require 

gradient evaluations. 

4. CONCLUSION 

In this paper, an investigation on the 

generalization of the most common classical 

iterative methods used for the solution of linear 

systems (like Gauss–Seidel, SOR, Jacobi, and 

others) to the unconstrained optimization of 

nonlinear functions has been conducted. 

Although the nonlinear iterative rootfinding 

methods have been extensively studied, the 

unconstrained optimization case has not been 

thoroughly analyzed. Thus, in this work 

unconstrained optimization algorithms for 

nonlinear functions based on generalizations of 

iterative linear methods were introduced. 

Theoretical convergence results for the 

proposed algorithms have been derived for 

computing a local minimizer of a function. A 

strategy for developing globally convergent 

modifications of these algorithms has also been 

proposed.  

5. SCOPE OF FUTURE RESEARCH 

The new algorithms have been implemented 

and tested on classical test problems and on 

real-life artificial neural network applications 

and the results to date appear to be very 

promising. In a subsequent communication we 

intend to implement in parallel the methods of 

the Jacobi class, using the Parallel Virtual 

Machine (PVM) Preliminary results indicate that 

utilizing PVM, the speed up achieved is 

analogous to the number of the processors 

used [13], thus considerably shorten the 

minimization process time 
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