

MORE RESULTS ON COMPLEMENTARY TREE NIL DOMINATION NUMBER OF A GRAPH

S. Muthammaiand G. Ananthavalli

Government Arts College for Women (Autonomous), Pudukkottai-622001, India

Abstract:

A set D of a graph G = (V, E) is a dominating set, if every vertex in V – D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D of a connected graph G is called a complementary tree nil dominating set if the induced sub graph $\langle V - D \rangle$ is a tree and V – D is not a dominating set. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil domination number of G and is denoted by $\gamma_{ctnd}(G)$. In this paper, bounds for $\gamma_{ctnd}(G)$ and its exact values for some particular classes of graphs are found. Some more results on complementary tree nil domination number are also established.

Key words: complementary tree domination number, complementary trees nil domination number.

1. Introduction

Graphs discussed in this paper are finite, undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. For $v \in V(G)$, the neighborhood N(v) of v is the set of all vertices adjacent to v in G. $N[v] = N(v) \cup \{v\}$ is called the closed neighborhood of v. A vertex $v \in V(G)$ is called a support if it is adjacent to a pendant vertex. (That is, a vertex of degree one). If x = uv is a line of G, and w is not a point of G, then x is subdivided when it is replaced by the lines uw and wv. If every line of G is subdivided, the resulting graph is the subdivision graph S(G). The concept of domination in graphs was introduced by Ore[5]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G) - D is adjacent to some vertex in D. A minimum dominating set in a graph G is a dominating set of minimum cardinality. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by y(G). The concept of domatic partition in graphs was introduced by E.J. Cockayne and S.T. Hedetniemi[2]. A partition Δ of its vertex set V(G) is called a domatic partition of G if each class of Δ is a dominating set in G. The maximum number of classes of a domatic partition of G is called the domatic number of G and is denoted by d(G). A dominating set D of a connected graph G is a nonsplit dominating set, if the induced subgraph V(G) - D is connected. Muthammai, Bhanumathi and Vidhya[4] introduced the concept of complement tree dominating set. A dominating set $D \subseteq V(G)$ is said to be complementary tree dominating set (ctd-set) if the induced sub graph $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{cnd}(G)$. Any undefined terms in this paper may be found in Harary[1]. Here, G is a connected graph with p vertices and q edges.

We introduced the concept of complementary tree nil dominating set in [3]. A dominating set $D \subseteq V(G)$ is said to be a complementary tree nil dominating set (ctnd-set) if the induced subgraph < V(G) - D > is a tree and V(G) - D is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination number of G and is denoted by $\gamma_{ctnd}(G)$.

In this paper, bounds for $\gamma_{ctnd}(G)$ and its exact values for some particular classes of graphs and also relationships between complementary tree nil domination number and other related parameters are found.

2. Prior Results

Theorem 2.1.[2] For any connected graph G, $d(G) \le \delta(G) + 1$.

Theorem 2.2.[3] For any connected graph G with p vertices, $2 \le \gamma_{ctnd}(G) \le p$, where $p \ge 2$.

Theorem 2.3.[3]For any connected graph G, $\delta(G) + 1 \le \gamma_{ctnd}(G)$.

Theorem 2.4.[3]Let G be a connected graph with p vertices. Then $\gamma_{ctnd}(G) = 2$ if and only if G is a graph obtained by attaching a pendant edge at a vertex of degree p - 2 in T + K₁, where T is a tree on (p - 2) vertices.

Theorem 2.5.[3] For any connected graph G, $\gamma_{ctnd}(G) = p$ if and only if $G \cong K_p$, where $p \ge 2$.

Theorem 2.6.[3] Let G be a connected graph with $p \ge 3$ and $\delta(G) = 1$. Then $\gamma_{ctnd}(G) = p - 1$ if and only if the subgraph of G induced by vertices of degree atleast 2 is K_2 or K_1 .

That is, G is one of the graphs $K_{1,p-1}$ or $S_{m,n}(m + n = p, m, n \ge 1)$, where $S_{m,n}$ is a bistar which is obtained by attaching m-1 pendant edges at one vertex of K_2 and n-1 pendant edges at other vertex of K_2 .

Theorem 2.7.[3] Let G be a connected noncomplete graph with $\delta(G) \ge 2$. Then $\gamma_{ctnd}(G) = p - 1$ if and only if each edge of G is a dominating edge.

Theorem 2.8.[3] Let T be a tree on p vertices such that $\gamma_{ctnd}(T) \le p - 2$. Then $\gamma_{ctnd}(T) = p - 2$ if and only if T is one of the following graphs.

- (i) T is obtained from a path P_n (n \ge 4 and n < p) by attaching pendant edges at atleast one of the end vertices of P_n .
- (ii) T is obtained from P_3 by attaching pendant edges either at both the end vertices or at all the vertices of P_3 .

Notation 2.9.[3] Let \mathscr{G} be the class of connected graphs G with $\delta(G) = 1$ having one of the following properties.

- (a) There exist two adjacent vertices u, v in G such that $\deg_G(u) = 1$ and $\langle V(G) \{u, v\} \rangle$ contains P_3 as an induced subgraph such that end vertices of P_3 have degree atleast 2 and the central vertex of P_3 has degree atleast 3.
- (b) Let P be the set of all pendant vertices in G and let there exist a vertex v ∈ V(G) P having minimum degree in V(G) P and is not a support of G such that V(G) (N_{V-P}[v] P) contains P₃ as an induced subgraph such that the end vertices of P₃ have degree atleast 2 and the central vertex of P₃ has degree atleast 3.

Theorem 2.10.[3] Let G be a connected graph with $\delta(G) = 1$ and $\gamma_{ctnd}(G) \neq p - 1$. Then $\gamma_{ctnd}(G) = p - 2$ if and only if G does not belong to the class \mathscr{G} of graphs.

Theorem 2.11.[3] Let G be a connected, noncomplete graph with p vertices (p \ge 4) and $\delta(G) \ge 2$. Then $\gamma_{ctnd}(G) = p - 2$ if and only if G is one of the following graphs.

- (a) A cycle on atleast five vertices.
- (b) A wheel with six vertices (W_6) .
- (c) G is the one point union of complete graphs.

(d) G is obtained by joining two complete graphs by edges.

(e) G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is a complete graph on (p - 1) vertices.

(f) G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is $K_{p-1} - e$, ($e \in E(K_{p-1})$) and N(v) contains atleast one vertex of degree (p-3) in $K_{p-1} - e$.

Theorem 2.12. [4] $\gamma_{ctd}(T) = m$ if and only if each vertex of degree atleast 2 is a support, where m is the number of pendent vertices in T.

3. Main Results

Definition 3.1.

The one point union $C_n^{(t)}$ of t-copies of cycle C_n is the graph obtained by taking a new vertex u as a common vertex such that any two distinct cycles C_i and C_j are edge disjoint and do not have any vertex in common except u.

Theorem 3.1.

$$\label{eq:Fort} \text{For } t \geq 2 \text{ and } n \geq 4, \ \gamma_{\text{ctnd}}(C_n^{(t)}) = \begin{cases} t+2, & \text{if } n=4\\ (n-3)t+1, & \text{if } n \geq 5. \end{cases}$$

Proof.

Let $G = C_n^{(t)}$ and u be the vertex of union of t cycles of length n. G has t(n - 1) + 1 vertices. Let the vertex set of kth cycle in G be $V_k = \{u, v_1^k, v_2^k, ..., v_{n-1}^k\}$ and edge set be $E_k = \{(u, v_1^k), (u, v_{n-1}^k)\} \cup U_{i=1}^{n-2}(v_i^k, v_{i+1}^k)$. Therefore, $V(G) = \bigcup_{k=1}^t V_k$, $E(G) = \bigcup_{k=1}^t E_k$. Case 1: n = 4 and |V(G)| = 3t + 1.

If $D = \bigcup_{k=1}^{t} \{v_2^k\} \cup \{v_1^1, v_3^1\} \subseteq V(G)$, then D is a dominating set of G. Also $\langle V(G) - D \rangle \cong K_{1,2t-2}$, N(v_2^1) \subseteq D and hence D is a ctnd-set of G. Therefore, $\gamma_{ctnd}(C_4^{(t)}) \leq |D| = t + 2$. LetD' be any ctnd- set of $C_4^{(t)}$. Since D' contains atleast one vertex v such that N(v) \subseteq D', D' contains vertices of N(v_i) for some v_i, $v_i \in V(G)$, where deg(v_i) = 2 in G. To dominate vertices which are adjacent to u, a vertex from each cycle must belong to D' except one vertex, and hence D' contains atleast 3 + t - 1 vertices. Therefore, $|D'| \ge t + 2$.

That is, $\gamma_{ctnd}(C_4^{(t)}) = t + 2$. Case 2: $n \ge 5$ and |V(G| = (n-1)t + 1. Let $D = \bigcup_{k=1}^t \{v_2^k, v_3^k, \dots, v_{n-2}^k\} \cup \{v_1^1\} \subseteq V(G)$. Then $\langle V(G) - D \rangle \cong K_{1,2t-1}$, $N(v_i^k) \subseteq D$, $i = 3, \dots n-1$, $k = 1, 2, \dots, t$ and hence D is a ctnd-set of G. Therefore, $\gamma_{ctnd}(G) = |D| \leq t (n-3) + 1$.

Since $\gamma_{ctnd}(C_n) = n - 2$, $n \ge 5$ and there are t cycles and one vertex is common to all cycles, $\gamma_{ctnd}(C_n^{(t)}) \ge t (n-2) - (t-1) \ge t (n-3) + 1$. Hence $\gamma_{ctnd}(C_n^{(t)}) = t(n-3) + 1$.

Example 3.1.

For the graph $C_6^{(3)}$ given in Figure 3.1, $D = \bigcup_{k=1}^3 \{v_2^k, v_3^k, v_4^k\} \cup \{v_1^1\}$ is a minimum ctnd-set of $C_6^{(3)}$ and hence $\gamma_{ctnd}(C_6^{(3)}) = |D| = 10$.

Definition 3.2.

Let G_1 , G_2 , ..., G_k be k copies of a graph G, where $k \ge 2$. G(k) is a graph obtained by adding an edge from G_i to G_{i+1} ; i = 1, 2, 3, ..., k-1 and the graph G(k) is called the path union of k copies of the graph G.

Theorem 3.2.

Let $C_n(t)$, $t \ge 2$, $n \ge 3$ be the path union of t cycles of length n. Then

(t-	+ 2,	if	n = 3	
$\gamma_{ctnd}(C_n(t)) = \begin{cases} 2t \end{cases}$	+ 1,	if	n = 4	
((n	— 2)t,	if	n ≥ 5	

Proof.

Let $C_n(t)$ denote the path union of t copies of the cycles C_n with vertices v_i^j in the jth copy of C_n , where $1 \le i \le n$ and $1 \le j \le t$. Let the vertices v_1^k and v_1^{k+1} ($1 \le k \le t-1$) be joined by an edge. The vertices v_1^1 and v_1^t are of degree 3, the vertices v_1^k , $2 \le k \le t-1$ are of degree 4 and the remaining vertices are of degree 2 and $C_n(t)$ has nt vertices.

Case 1: n = 3

Here $|V(C_3(t))| = 3t$. Let $D = \bigcup_{i=1}^t \{v_2^i\} \cup \{v_1^1, v_3^1\}$. Then D is a dominating set of $C_3(t)$. Also $<V(C_3(t)) - D > \cong 2t - 2$, $N(v_2^1) \subseteq D$ and hence D is a minimum ctnd-set of $C_3(t)$. Therefore, $\gamma_{ctnd}(C_3(t)) = |D| = t+2$. Case 2: n = 4

Here $|V(C_4(t))| = 4t$. Let $D = \bigcup_{i=1}^t \{v_2^i, v_3^i\} \cup \{v_4^1\}$. Then D is a dominating set of G. Also $\langle V(C_4(t)) - D \rangle$ is a tree obtained by attaching a pendant edge at a vertex of P_{t-1} of $P_{t-1} \circ K_1$, $N(v_3^1) \subseteq D$ and D is a ctnd-set of G and hence, $\gamma_{ctnd}(C_4(t)) = |D| \leq 2t+1$. Let D' be any ctnd- set of G. Since D' contains atleast one vertex v such that $N(v) \subseteq D'$, D' contains vertices of $N(v_i)$ for some v_i , where $v_i \in V(C_4(t)$, where $deg(v_i) = 2$ in $C_4(t)$. Therefore, D' contains atleast 3 + 2 (t-1) vertices. Hence $|D'| \geq 2t + 1$ and $\gamma_{ctnd}(C_4(t)) = 2t + 1$. Case $3: n \geq 5$

Let $D = \bigcup_{i=1}^{t} \{v_3^i, v_{4_i}^i, ..., v_n^i\}$. Then D is a dominating set of $C_n(t)$. Also $\langle V(C_n(t)) - D \rangle \cong P_t \circ K_{1_i}$ $N(v_k^i) \subseteq D$, k = 4, 5, ..., n - 1, i = 1, 2, ..., t and hence D is a ctnd-set of $C_n(t)$ and hence, $\gamma_{ctnd}(C_n(t)) = |D| \le (n-2)t$.

 $\gamma_{ctnd}(C_n) = n - 2, n \ge 5$. But there are t cycles and $\langle \{v_1^1, v_1^2, ..., v_1^t\} \rangle \cong P_t$. Therefore, $\gamma_{ctnd}(C_n(t)) \ge t(n - 2) - (t - 1) \ge t(n - 3) + 1$.

Hence $\gamma_{ctnd}(C_n(t)) = t(n-3) + 1$.

Example 3.2.

For the C₅(5) graph given in Figure 3.2, $D = \bigcup_{i=1}^{5} \{v_3^i, v_4^i, v_5^i\}$ is a minimum ctnd-set of C₅(5) and hence $\gamma_{\text{ctnd}}(C_5(5)) = 15$.

Definition 3.3.

A t-ply $P_t(u,v)$ is a graph with t paths joining vertices u and v, each of length at least two and no two paths have a vertex in common except the end vertices u and v in $P_t(u,v)$.

Theorem 3.3.

 $\gamma_{ctnd}(P_t(u, v)) = p - t$, where p is the number of vertices in $P_t(u, v)$. Proof.

Let the vertices of t path $P^{(i)}$, i = 1, 2, ..., t be u, v_1^t , v_2^t , ..., v_n^t , v (n \ge 2). The vertices u and v are of degree t and the remaining vertices are of degree 2.

Here $|V(P_t(u, v))| = nt + 2$. Let $D = \bigcup_{t=1}^n \{v_1^t, v_2^t, ..., v_{n-1}^t\} \cup \{u, v_n^1\}$. Then D is a dominating set of $P_t(u, v)$ and $\langle V(P_t(u, v)) - D \rangle \cong K_{1,t-1}, N(u) \subseteq D$ and hence, D is a minimum ctnd-set of G and hence, $\gamma_{ctnd}(G) = |D| = (n-1)t + 2 = nt - t + 2 = p - t$.

Let D be a ctnd-set of $P_t(u, v)$. Then < V $(P_t(u, v)) - D$ is a tree. If $\langle V(P_t(u, v)) - D \rangle$ contains a path P_4 , then D is not a dominating set of G. Therefore, $\langle V(P_t(u, v)) - D \rangle$ is a star and hence $|D'| \ge p - t$. $\gamma_{ctnd}(P_t(u, v)) \ge p - t$.

Hence $\gamma_{ctnd}(P_t(u, v)) = p - t$.

Example 3.3.

For the graph given in Figure 3.3, D = $\bigcup_{t=1}^{6} \{v_1^t, v_2^t\} \cup \{u, v_3^1\}$ is a minimum ctnd-set of G and hence, $\gamma_{ctnd}(G) = |D| = 14$. $v_1^1 \qquad v_2^2 \qquad v_3^2 \qquad v_3^2$ $v_1^3 \qquad v_2^2 \qquad v_3^2$ $v_1^4 \qquad v_2^4 \qquad v_3^4$ $v_1^4 \qquad v_2^4 \qquad v_3^4$

 V_3^6

 V_2^6

Theorem 3.4.

Let G be a graph such that both G and its complement \overline{G} are connected. Then,

- (i) $6 \le \gamma_{ctnd}(G) + \gamma_{ctnd}(\overline{G}) \le 2(p-1)$
- (ii) $9 \le \gamma_{ctnd}(G) \cdot \gamma_{ctnd}(\overline{G}) \le (p-1)^2$

Proof.

Let both G and \overline{G} be connected. By Theorem 2.2, $2 \le \gamma_{ctnd}(G)$. But if $\gamma_{ctnd}(G) = 2$ if and only if G is a graph obtained by attaching a pendant edge at a vertex of degree p - 2 in T + K₁, where T is a tree on (p - 2) vertices, then \overline{G} has an isolated vertex. Therefore, $3 \le \gamma_{ctnd}(G)$. Hence $6 \le \gamma_{ctnd}(G) + \gamma_{ctnd}(\overline{G})$ and $9 \le \gamma_{ctnd}(G) \cdot \gamma_{ctnd}(\overline{G})$

By Theorem 2.5, $\gamma_{ctnd}(G) = p$ if and only if G is a complete graph on p vertices. But in this case \overline{G} is disconnected. Therefore, $\gamma_{ctnd}(G) \le p - 1$. Hence, $\gamma_{ctnd}(G) + \gamma_{ctnd}(\overline{G}) \le 2(p - 1)$ and $\gamma_{ctnd}(G) \cdot \gamma_{ctnd}(\overline{G}) \le (p - 1)^2$.

Both lower and upper bounds are attained, if G is a path on 4 vertices.

4. Relationship between Complementary Tree Nil Domination Number and Other related Parameters Theorem 4.1.

For any connected graph G, $d(G) \le \gamma_{ctnd}(G)$, where d(G) is the domatic number of G.

Proof.

By Theorem 2.3, for any connected graph G, $\delta(G) + 1 \leq \gamma_{ctnd}(G)$. By Theorem 2.1, for any connected graph G, $d(G) \leq \delta(G) + 1$. Hence $d(G) \leq \gamma_{ctnd}(G)$.

Equality holds, if $G \cong K_{p.}$

Theorem 4.2.

For any connected graph G with p vertices ($p \ge 3$), $d_{ctnd}(G) = 1$.

Proof.

By the definition of complementary tree nil dominating set, if D is a ctnd-set, then V – D is not a dominating set. Exactly one domatic partition can be constructed in ctnd- set for any connected graph G. Therefore, any two ctnd-sets of G are not disjoint and hence, $d_{ctnd}(G) = 1$.

Theorem 4.3.

For any connected graph G, G \cong K_{1, p-1}, $\gamma_{ctnd}(S(G)) = p + q - \Delta(G)$, where S(G) is the subdivision graph of G.

Proof.

Let G be not a star. Let v be a vertex of maximum degree in G and let u be a subdivided vertex adjacent to v in S(G).

If $D = N_{s(G)}[v] - \{u\}$, then V(S(G)) - D is a dominating set of S(G), $\langle D \rangle_{S(G)} \cong K_{1,\Delta(G)-1}$ and $|D| = \Delta(G)$. Since G is a not a star, there exists an edge say e not incident with v in G. Then w be the subdivided vertex of the edge e in S(G). Therefore, w $\in V(S(G)) - D$ such that $N_{s(G)}(w) \subseteq V(S(G)) - D$. Therefore, V(S(G)) - D is a ctnd-set of S(G) and hence $\gamma_{ctnd}(S(G)) \leq |V(S(G)) - D| = p + q - \Delta(G)$.

Let D' be a ctnd-set of G. Then < V(S(G)) – D'> is a tree. If < V(S(G)) – D'> contains a path P₄, then D' is not a dominating set of G. Therefore, < V(S(G)) – D'> is a star on $\Delta(G)$ vertices in G and hence $|D'| \ge p + q - \Delta(G)$. $p + q - \Delta(G)$. $\gamma_{ctnd}(S(G)) \ge p + q - \Delta(G)$.

Hence $\gamma_{ctnd}(S(G)) = p + q - \Delta(G)$.

Theorem 4.4.

Let T be a tree. Then $\gamma_{ctnd}(T) = \gamma_{ctd}(T) + 1$ if and only if each vertex of degree atleast 2 in T is a support.

Proof.

Let S = { v_1 , v_2 , ..., v_m } be a pendant vertices in T and |S| = m. Let D and D be ctd and ctnd sets respectively.

S is a γ_{ctd^-} set of T if and only if every vertex of T is a support. Let $v_i \in \langle V(T) - S \rangle$ be an end vertex of $\langle V(T) - S \rangle$. Then S UN(v_i) a γ_{ctnd} – set of T if and only if each vertex of degree atleast 2 is a support. **Remark 4.1.**

 $\gamma_{ctnd}(T) = \gamma_{ctd}(T)$ if and only if $\gamma_{ctd}(T) > m$, where m is the set of all pendant vertices in T. **Theorem 4.5.**

For any connected graph G, $\gamma_{ctnd}(G) + \Delta(G) \le 2p - 1$.

Proof.

For any graph with p vertices $\Delta(G) \le p - 1$, by the Theorem 2.2, $\gamma_{ctnd}(G) \le p$ which implies $\gamma_{ctnd}(G) + \Delta(G) \le 2p-1$.

Theorem 4.6.

For any connected graph G, $\gamma_{ctnd}(G) + \Delta(G) = 2p - 1$ if and only if $G \cong K_p$.

Proof.

If $G \cong K_{p}$, then $\gamma_{ctnd}(G) + \Delta(G) = 2p - 1$.

Conversely, assume $\gamma_{ctnd}(G) + \Delta(G) = 2p - 1$. Then the only possible case is $\gamma_{ctnd}(G) = p$ and $\Delta(G) = p$

p - 1.

But $\gamma_{ctnd}(G) = p$ if and only if $G \cong K_{p.}$ and $\Delta(G) = p - 1$. Hence $G \cong K_{p.}$

Theorem 4.7.

For any connected graph G, $\gamma_{ctnd}(G) + \Delta(G) = 2p - 2$ if and only if G is one of the following graphs:

 $K_{1,p-1}$, G is isomorphic to a graph $K_p - Y$, where Y is a matching in K_p by joining atleast one edge $e \in Y_1$.

Proof.

Let $\gamma_{ctnd}(G) + \Delta(G) = 2p - 2$. Then either

(i)
$$\gamma_{ctnd}(G) = p$$
 and $\Delta(G) = p - 2$ or

(ii) $\gamma_{ctnd}(G) = p - 1$ and $\Delta(G) = p - 1$.

Case $1.\gamma_{ctnd}(G) = p$ and $\Delta(G) = p - 2$

By Theorem 2.5, $G \cong K_p$. But for a complete graph, $\Delta(G) = p - 1$ and hence this case is not possible. Case 2. $\gamma_{ctnd}(G) = p - 1$ and $\Delta(G) = p - 1$.

 $\gamma_{ctnd}(G) = p - 1$ if and only if G is one of the following

(i) $K_{1, p-1} \text{ or } S_{m,n}(m + n = p, m, n \ge 2)$, if $\delta(G) = 1$.

(ii) G is a graph in which each edge is a dominating edge, if δ (G) \geq 2.

Subcase 2.1: Let $G \cong K_{1, p-1}$ or $S_{m,n}$ (m + n = p, m, n \ge 2).

In $S_{m,n}$, $\Delta(G) \neq p - 1$. Hence $G \cong K_{1, p-1}$.

Subcase 2.2: G is a graph in which each edge is a dominating edge.

If $\Delta(G) = p - 1$, then G is isomorphic to graph $K_p - Y$, where Y is a matching in K_p by joining atleat one edge $e \in Y$.

Hence G is isomorphic to $K_{1,p-1}$ or to a graph $K_p - Y$, where Y is a matching in K_p by joining atleast one edge $e \in Y$.

Conversely if G is isomorphic to $K_{1, p-1}$ or to a graph $K_p - Y$, where Y is a matching in K_p by joining atleast one edge $e \in Y$, then $\gamma_{ctnd}(G) = p - 1$ and $\Delta(G) = p - 1$. Hence $\gamma_{ctnd}(G) + \Delta(G) = 2p - 2$.

Theorem 4.8.

For any connected graph G, $\gamma_{ctnd}(G) + \Delta(G) = 2p - 3$, if and only if G is one of the following graphs:

1. $S_{2,n}$ $(n \ge 2)$, $K_{2,n}$ $(n \ge 2)$, W_6 .

2. G is a graph obtained from a complete graph by attaching pendent edges at exactly one vertex.

3. G is a graph which is the one point union of complete graphs.

4. G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is a complete graph on (p - 1) vertices and $G \ncong K_p$.

5. G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is $K_{p-1} - e_{r}$,

 $(e \in E(K_{p-1}))$ and N(v) contains at least one vertex of degree (p-3) in $K_{p-1} - e$.

Proof.

If G is a graph stated in the theorem, then $\gamma_{ctnd}(G) + \Delta(G) = 2p - 3$.

Conversely, assume $\gamma_{ctnd}(G) + \Delta(G) = 2p - 3$. Then there are three cases to consider

- (i) $\gamma_{ctnd}(G) = p$ and $\Delta(G) = p 3$ and
- (ii) $\gamma_{ctnd}(G) = p 1$ and $\Delta(G) = p 2$
- (iii) $\gamma_{ctnd}(G) = p 2$ and $\Delta(G) = p 1$

Case $1.\gamma_{ctnd}(G) = p$ and $\Delta(G) = p - 3$

By Theorem 2.5, $G \cong K_p$. But for a complete graph, $\Delta(G) = p - 1$ and hence this case is not possible.

Case $2.\gamma_{ctnd}(G) = p - 1$ and $\Delta(G) = p - 2$

http://www.ijmr.net.in email id- irjmss@gmail.com

 $\gamma_{ctnd}(G) = p - 1$ if and only if G is one of the following graph:

(i) $K_{1, p-1}$ or $S_{m,n}(m + n = p, m, n \ge 2)$, if δ (G) = 1.

(ii) G is a graph in which each edge is a dominating edge, if δ (G) \geq 2.

Subcase 2.1. Let $G \cong K_{1, p-1}$ or $S_{m,n,}$ (m + n = p, m, n \ge 2).

If $G \cong K_{1, p-1}$, then $\Delta(G) \neq p-2$.

If $G \cong S_{m,n}$, then $\Delta(G) = p - 2$ is possible only if $G \cong S_{2,n}$ $(n \ge 2)$.

Hence $G \cong S_{2,n} (n \ge 2)$.

Subcase 2.2. G is a graph in which each edge is a dominating edge.

Since each edge of G is a dominating edge, every vertex of X is adjacent to all the vertices in V - X.

Let X = {x, y} and let V – X = { $v_1, v_2, ..., v_{p-2}$ }.

Subcase 2.2.1 x and y are adjacent

Then $\Delta(G) = p - 1$. But $\Delta(G) = p - 2$. Therefore no graph exists in this case.

Subcase 2.2.2 x and y are non adjacent.

If each edge of $\langle V - X \rangle$ is a dominating edge, then $\Delta(G) = p - 1$. But $\Delta(G) = p - 2$.

If there exists at least one edge in < V - X > which is not a dominating edge, then $\gamma_{ctnd}(G) = p - 2$. But $\gamma_{ctnd}(G) = p - 1$.

If each edge of $\langle V - X \rangle$ is independent, then $G \cong K_{2,n}$, $(n \ge 2)$.

Case $3.\gamma_{ctnd}(G) = p - 2$ and $\Delta(G) = p - 1$

By Theorem 2.8, Theorem 2.10, and Theorem 2.11, $\gamma_{ctnd}(G) = p - 2$ if and only if G is one of the following graphs:

1. $G \cong T$, where T is a tree either

obtained from a path P_n (n \ge 4 and n < p) by attaching pendant edges at atleast one of the end vertices of P_n .

or

obtained from P_3 by attaching pendant edges at either both the end vertices or all the vertices of P_{3} .

2. G ∉ 𝒢 , if δ(G) =1

3. If $\delta(G) \ge 2$, then G is one of the following graphs.

(i) A cycle on atleast five vertices.

(ii) A wheel with six vertices.

(iii) G is a graph which is the one point union of complete graphs.

(iv) G is obtained by joining two complete graphs by an edge.

(v) G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is

complete graph on (p-1) vertices and $G \ncong K_p$.

(vi) G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is $K_{p-1} - e$,

 $(e \in E(K_{p-1}))$ and N(v) contains atleast one vertex of degree (p-3) in $K_{p-1}-e$.

Case 3.1. G \cong T,

In this case $\Delta(G) \neq p-1$. Since $G \ncong K_{1,p-1}$. Therefore no connected graph exists in this case.

Case 3. 2. $G \notin \mathcal{G}$ and $\delta(G) = 1$

G is a graph obtained from a complete graph by attaching pendent edges at exactly one vertex. Case $3.3.\delta(G) \ge 2$.

Subcase 3.3.1.A cycle on atleast five vertices.

 Δ (C_p) = 2 and Δ (G) = p - 1 implies p = 3. But p \geq 5. Therefore no connected graph exists in this case.

Subcase 3.3.2. G is obtained by joining two complete graphs by an edge.

In this case $\Delta(G) \neq p - 1$. Therefore no connected graph exists in this case.

Subcase 3.3.3. A wheel with six vertices, G is the one point union of complete graphs, G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is a complete graph on (p - 1) vertices and $G \ncong K_p$ or G is a graph such that there exists a vertex $v \in V(G)$ such that G - v is $K_{p-1} - e$, $(e \in E(K_{p-1}))$ and N(v) contains at least one vertex of degree (p - 3) in $K_{p-1} - e$.

In these cases, Δ (G) = p – 1.

Hence G is isomorphic to one of the following graphs

- 1. $S_{2,n}$ $(n \ge 2)$, $K_{2,n}$ $(n \ge 2)$, W_6 .
- 2. G is a complete graph by attaching pendent edges at exactly one vertex.
- 3. G is a graph which is the one point union of complete graphs.
- 4. G is a graph such that there exists a vertex $v \in V(G)$ such that G v is complete graph on (p 1) vertices and G $\cong K_p$.
- 5. G is a graph such that there exists a vertex $v \in V(G)$ such that G v is $K_{p-1} e$, $(e \in V(G))$
- $E(K_{p-1})$) and N(v) contains atleast one vertex of degree (p 3) in $K_{p-1} e$.

References

- [1] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
- [2] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977) 247-261.
- [3] S. Muthammai and G. Ananthavalli, Complementary tree nil domination number of a graph. (submitted)
- [4] S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree domination in graphs, International Mathematical Forum, Vol. 6, 2011, 26, 1273–1283.
- [5] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, (1962).