

Z_n -MULTIPLICATIVE GRAPHS

Dr Ajitha V

P.G Department of Mathematics,

Mahatma Gandhi College, Iritty-670703, Kerala, India

Silja C

Research Scholar,

Mary Matha Arts & science College, Mananthavady Kannur University, Kannur- 670 567, Kerala, India

Abstract

Let G = (V, E) be a graph with p vertices and q edges. A graph G is said to admit Z_{q+1} multiplicative labeling if its vertices can be labeled by non negative integers such that induced edge labels obtained by the products of the labels of end vertices modulo q + 1 are the positive numbers up to q. A graph admit such a labeling called Z_{q+1} multiplicative graphs. In this paper we give certain graphs which admit Z_{q+1} multiplicative labeling and certain graphs not admit Z_{q+1} multiplicative labeling.

Keywords

 $Z_{\scriptstyle q+1}$ -multiplicative labeling, $Z_{\scriptstyle q+1}$ -multiplicative graph.

1. Introduction

By a graph we mean a finite, connected, simple undirected graph with. The vertex set and the edge set of the graph *G* are denoted by V(G) and E(G) respectively. For various graph theoretic notations and terminology we follow F. Harrary [1]

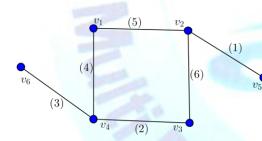
Definition 1.1 Let G = (V, E) be a (p, q) graph. The graph G is said to be a

 Z_{q+1} -multiplicative labeling if there exist a one-to-one function $f:V(G) \to N$ (where N is the set of all positive integers) that induces a function $f^*: E(G) \to Z_{q+1} - \{0\}$ of the edges of G

defined by $f^*(uv) = f(u)f(v) \mod(q+1)$ for every $e = uv \in E(G)$. The graph which admits such a labeling is called a Z_{q+1} -multiplicative graph.

Example 1.2 Z_7 -multiplicative graph.

Define $f: V(G) \to N$ by $f(v_1) = 4, f(v_2) = 3, f(v_3) = 2, f(v_4) = 1, f(v_5) = 5, f(v_6) = 10.$



Now we discus about star graph.

Theorem 1.3: Let The star graph K_{1n} is Z_{n+1} -multiplicative graphs.

Proof : Let v_0 be the apex vertex and $v_1, v_2, ..., v_n$ be the pendent vertices of the

star graph K_{1n}

define $f(v_0) = n+2$

 $f(v_i) = i \quad \text{for } i = 1, 2, ..., n.$ $E(K_{1n}) = \{v_0v_1, v_0v_2, ..., v_0v_n\}.$

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com

For i = 1, 2, ..., n

$$f(v_0)f(v_i) = (n+2)i \mod(n+1)$$
$$= i \mod(n+1)$$
$$= f^*(v_0v_i)$$

We see that the induced edge labels obtained by the product of the labels of the

vertices are the first *n* positive integers.

Theorem 1.4 : The cycle C_3 is not Z_4 -multiplicative graph.

Proof : Let v_1, v_2, v_3 be vertices of C_3 . Define $f: V(G) \to N$ by

$$f(v_1) = a, f(v_2) = b, f(v_3) = c$$
, where a, b, c are distinct integers.

Let $f^*(v_1v_2) \equiv 2 \pmod{4}$

that is $f(v_1)f(v_2) = ab \equiv 2 \pmod{4}$.

 $\Rightarrow a \text{ or } b \text{ must be even.} \Rightarrow ac \text{ or } bc \text{ must be even.}$

$$\Rightarrow ac = f(v_1)f(v_3) = f^*(v_1v_3)$$
 or $bc = f(v_2)f(v_3) = f^*(v_2v_3)$ must be even.

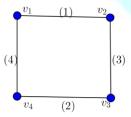
Then either $f^*(v_1v_3)$ nor $f^*(v_2v_3)$ congruent to 1 or 3 modulo 4.

Which contradict definition of f^* .

 $\Rightarrow C_3$ is not Z_4 -multiplicative graph.

Theorem 1.5 : The cycle C_4 is Z_5 -multiplicative graph.

Proof : Define $f: V(G) \to N$ by $f(v_1) = 1, f(v_2) = 6, f(v_3) = 3, f(v_4) = 4$



Theorem 1.6 : The cycle C_5 is not a Z_6 -multiplicative graph.

Proof : Let v_1, v_2, v_3, v_4, v_5 be vertices of C_5 . Define $f: V(G) \to N$ by

$$f(v_1) = a, f(v_2) = b, f(v_3) = c, f(v_4) = d, f(v_5) = e,$$
, where a, b, c, d, e are distinct

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com

integers.

Let $f^*(v_1v_2) \equiv 3 \pmod{6}$ that is $f(v_1)f(v_2) = ab \equiv 3 \pmod{6}$ \Rightarrow a or b must be a multiple of 3. Let it be a. Now, if a is even $\Rightarrow a \equiv 0 \pmod{6} \Rightarrow ab \equiv 0 \mod{6}$ if b is even $\Rightarrow ab \equiv 0 \mod{6}$ that is $f^*(v_1v_2) = f(v_1)f(v_2) = ab \equiv 0 \pmod{6}$. Which is not possible.

Theorem 1.7 : Complete graph K_3 is not Z_4 – multiplicative .

Proof : We know that $K_3 = C_3$.

Already proved that C_3 is not Z_4 – multiplicative graph.

Theorem 1.8 : For a Complete graph K_n with (p-1) edges where p is a prime number then K_n is not Z_{p-1} – multiplicative graph .

Proof : Let $v_1, v_2, ..., v_n$ be vertices of K_n .

Consider v_i , with $f^*(v_i v_{i+1}) \equiv 1 \mod(p-1)$

 $f(v_i)f(v_{i+1}) = f^*(v_iv_{i+1}) \equiv 1 \mod(p-1)$

This imply $f(v_i) \equiv 1 \mod (p-1)$ and $f(v_{i+1}) \equiv 1 \mod (p-1)$ or

$$f(v_i) \equiv -1 \mod(p-1) \& f(v_{i+1}) \equiv -1 \mod(p-1)$$

If $f(v_i) \equiv 1 \mod(p-1) \& f(v_{i+1}) \equiv 1 \mod(p-1)$

Consider v_i , $j \neq i, i+1$

$$f^*(v_i v_j) = f(v_i) f(v_j) \equiv f(v_j) \operatorname{mod}(p-1)$$

$$f^*(v_{i+1}v_j) = f(v_{i+1})f(v_j) \equiv f(v_j) \mod(p-1)$$

Which is not possible

If $f(v_i) \equiv -1 \mod(p-1) \& f(v_{i+1}) \equiv -1 \mod(p-1)$

Consider v_i , $j \neq i, i+1$

 $f^*(v_i v_i) = f(v_i) f(v_i) \equiv -f(v_i) \mod(p-1)$

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com

 $f^*(v_{i+1}v_j) = f(v_{i+1})f(v_j) \equiv -f(v_j) \mod(p-1)$

Which is not possible. There for no such labeling exist.

Theorem 1.9 : For a Complete graph K_n with $p^2 - 1$ edges where p is a prime number then K_n is not $Z_{p^2} - 1$

multiplicative graph .

Proof : Let $v_1, v_2, ..., v_n$ be vertices of K_n . Define $f: V(G) \to N$ by $f(v_i) = a_i$ where a_i are distinct integers, for every i.

Since K_n is complete then the edge set $E(G) = \{v_i v_j ; 1 \le i, j \le n, i \ne j\}$.

Assume K_n is Z_{p^2} – multiplicative graph.

Let
$$f^*(v_k v_j) = p$$

 $\Rightarrow f(v_k)f(v_j) \equiv p(\text{mod } p^2)$

$$\Rightarrow a_k a_i \equiv p \pmod{p^2}$$

Then either a_k or a_j is a multiple of p.

Let it be a_k .

 $\Rightarrow a_i a_k\,$ Is a multiple of $\,\,p\,$, for every $\,1\,{\le}\,i\,{\le}\,n\,.$

 $\Rightarrow f^*(v_i v_k) = a_i a_k$ is a multiple of p, for every $1 \le i \le n$.

 $\Rightarrow f^*(v_i v_k)$ has the possibilities p, 2p, ..., (p-1)p

there are p-1 possibilities . But there are n-1 edges ,

Then $p-1 \ge n-1$ must satisfy $\Rightarrow n \le p$

$$n(n-1) \le p(p-1)$$

Since K_n has $\frac{n(n-1)}{2}$ edges.

$$\Rightarrow \frac{n(n-1)}{2} = p^2 - 1 \qquad \Rightarrow n(n-1) = 2p^2 - 2$$

(1) Imply $2p^2 - 2 = n(n-1) \le p(p-1)$

$$p^2 \le 2 - p \le 2 - 2 = 0$$
 [:: $p \ge 2$]

 $p^2 \leq 0$ Is a contradiction .

There for K_n is not Z_{p^2} – multiplicative graph .

(1)

Theorem 1.10 : For a Complete graph K_n with $p^m - 1$ edges where p is a prime number and m > 1 is any integer then K_n is not Z_{p^m} – multiplicative graph .

Proof : For m = 2 the result is above theorem.

Now assume m > 2.

Let $v_1, v_2, ..., v_n$ be vertices of K_n . Define $f: V(G) \to N$ by $f(v_i) = a_i$ where a_i are distinct integers, for every i.

Since K_n is complete then the edge set $E(G) = \{v_i v_j : 1 \le i, j \le n, i \ne j\}$.

Assume K_n is Z_{p^m} – multiplicative graph .

Let
$$f^*(v_k v_i) = p$$

 $\Rightarrow f(v_k) f(v_i) \equiv p(\text{mod } p^m)$

$$\Rightarrow a_k a_i \equiv p \pmod{p^m}$$

Then either a_k or a_j is a multiple of p.

Let it be a_k .

 $\Rightarrow a_i a_k$ is a multiple of p, for every $1 \le i \le n$.

 $\Rightarrow f^*(v_i v_k) = a_i a_k$ is a multiple of p, for every $1 \le i \le n$.

$$\Rightarrow f^*(v_i v_k)$$
 has the possibilities $p, 2p, ..., (p-1)p, p^2, 2p^2, ..., (p-1)p^2, ..., p^{m-1}, ..., (p-1)p^{m-1}$

there are (n-1)(p-1) possibilities. But there are n-1 edges,

Then $(m-1)(p-1) \ge n-1$ must satisfy.

$$\Rightarrow n(n-1) \le [(m-1)(p-1)][(m-1)(p-1)+1]$$

imply

$$n(n-1) \le p^2(m^2 - 2m + 1) + p(-2m^2 + 5m - 3) + m^2 - 3m + 2$$

Since
$$K_n$$
 has $\frac{n(n-1)}{2}$ edges.

$$\Rightarrow \frac{n(n-1)}{2} = p^m - 1 \qquad \Rightarrow n(n-1) = 2p^m - 2$$
(2) Imply $2p^m - 2 = n(n-1) \le p^2(m^2 - 2m + 1) + p(-2m^2 + 5m - 3) + m^2 - 3m + 2$

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com

(2)

$$\Rightarrow 2p^{m} - p^{2}(m^{2} - 2m + 1) + p(2m^{2} - 5m + 3) - (m^{2} - 3m + 4) \le 0$$
(3)

Consider,

$$2p^{m} - p^{2}(m^{2} - 2m + 1) + p(2m^{2} - 5m + 3) - (m^{2} - 3m + 4)$$

$$\geq 2^{m+1} - 4(m^2 - 2m + 1) + 2(2m^2 - 5m + 3) - (m^2 - 3m + 4) \qquad [\because p \ge 2]$$

$$\geq 2^{m+1} - m^2 + m + 6 = 2^{m+1} - (m+1)^2 + 3m + 7$$

$$\geq 2^{m+1} - (m+1)^2$$

Since
$$m > 2 \implies m+1 > 3 \implies 2^{m+1} > (m+1)^2$$

$$\Rightarrow 2^{m+1} - (m+1)^2 > 0$$

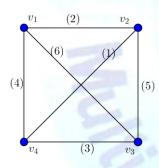
Which imply
$$\Rightarrow 2p^m - p^2(m^2 - 2m + 1) + p(2m^2 - 5m + 3) - (m^2 - 3m + 4) > 0$$

Contradiction to equation (3).

There for K_n is not Z_{p^m} – multiplicative graph .

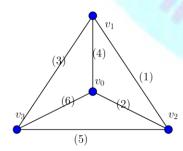
Example 1.11: Complete graph K_4 are Z_7 – multiplicative.

Define $f: V(G) \to N$ by $f(v_1) = 1, f(v_2) = 2, f(v_3) = 6, f(v_4) = 4$



Example 1.12: Wheel W_3 are Z_7 – multiplicative.

Define $f: V(G) \to N$ by $f(v_0) = 1, f(v_1) = 4, f(v_2) = 2, f(v_3) = 6$



Example 1.13: Wheel W_4 is not Z_9 – multiplicative.

Let v_0 be the central vertex and v_1, v_2, v_3, v_4 are vertices of cycle in W_4 .

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com

Define $f: V(G) \rightarrow N$ by $f(v_i) = a_i$, where a_i are distinct integers, for every $0 \le i \le 4$.

Let $f^*(v_1v_2) \equiv 3 \pmod{9}$

 $\Rightarrow f(v_1)f(v_2) \equiv 3 \pmod{9}$

 $\Rightarrow a_1 a_2 \equiv 3 \pmod{9}$

Then a_1 or a_2 is a multiple of 3.

Let it be a_1 .

- $\Rightarrow a_i a_1$ is a multiple of 3.
- v_2, v_4 are adjacent to v_1

 $\Rightarrow a_2 a_1$ and $a_4 a_1$ is a multiple of 3.

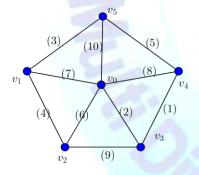
 $f^*(v_1v_2)$ & $f^*(v_1v_4)$ are multiple of 3

 $\Rightarrow f^*(v_1v_2) \equiv 6 \pmod{9} \& f^*(v_1v_4) \equiv 6 \pmod{9}$

Which is a contradiction . So W_4 is not Z_9 – multiplicative.

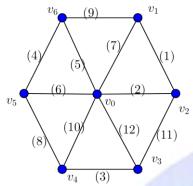
Example 1.14: Wheel W_5 are Z_{11} – multiplicative.

Define $f: V(G) \to N$ by $f(v_0) = 4$, $f(v_1) = 10$, $f(v_2) = 7$, $f(v_3) = 6$, $f(v_4) = 2$, $f(v_5) = 8$.



Example 1.15: Wheel W_6 are Z_{13} – multiplicative.

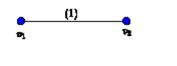
Define $f: V(G) \to N$ by $f(v_0) = 1, f(v_1) = 7, f(v_2) = 2, f(v_3) = 12, f(v_4) = 10, f(v_5) = 6, f(v_6) = 5.$

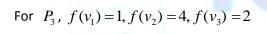


Next consider about paths,

Example 1.16: The path P_n is Z_n – multiplicative graph for $n \le 10$.

For
$$P_2$$
, $f(v_1) = 1, f(v_2) = 3$

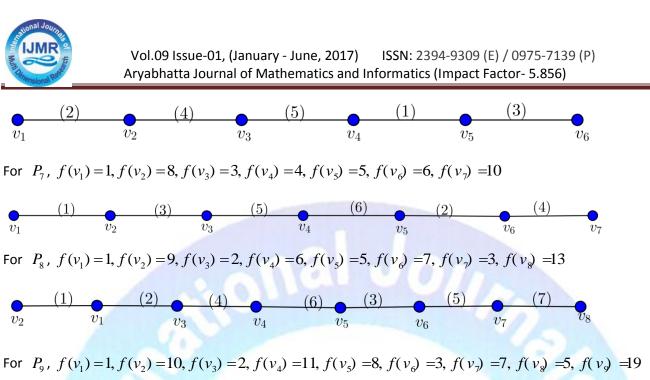


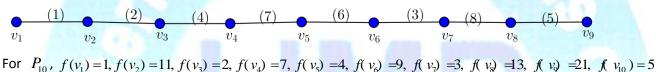


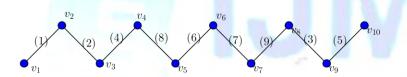
For P_4 , $f(v_1) = 2$, $f(v_2) = 1$, $f(v_3) = 5$, $f(v_4) = 3$

For
$$P_5$$
, $f(v_1) = 2$, $f(v_2) = 1$, $f(v_3) = 6$, $f(v_4) = 4$, $f(v_5) = 7$

For P_6 , $f(v_1) = 4$, $f(v_2) = 2$, $f(v_3) = 5$, $f(v_4) = 1$, $f(v_5) = 7$, $f(v_6) = 3$







Problem 1.17 The path P_n is Z_n – multiplicative graph for all n.

REFERENCES

- [1] F. Harary Graph Theory, Addition-Wesley, Reading, Mass, 1972
- [2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
- [3] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 17 (2010), DS6.