

ON A CLASS OF GROUP ALGEBRAS AND THEIR PRIMITIVE IDEMPOTENTS

¹Dr.M.Mary Jansi Rani ,²V.Sangeetha,³K.Jamshida

¹Head and Assistant Professor, Department of Mathematics, Thanthai Hans Roever College

Perambalur, Tamilnadu, India.^{2,3}Research scholar, Department of Mathematics, Kadhirmohideen College, Adirampattinam, Pattukottai, Tamilnadu, India.

ABSTRACT

Let F denotes a finite field having q = t (t is a prime, $s \ge 1$) elements .We Consider the group algebra F_qG where G is a finite group of order n. When F contains a primitive nth root of unity (implying that characteristic of F_q does not divide n) there is a known formula for obtaining the fall system of primitive idempotent of F_qG which is also an orthogonal F_q basis for the group algebra F_qG . The approach is via group character which are homeomorphisms from G into the cyclic group F_q^* of non zero elements of F_q . Earlier, ManjuPruthi ,S.K. Aroraetal have obtained expressions for primitive idempotent of the group algebra F_qC_m where C_m is a cyclic group of order m. They used techniques from the notation of q-cyclotomiccosets modulo m. The method presented here explains the role of "semi simplicity" of the ring $F_q[x]/(x^m - 1)$ and its connection with the group algebra F_qC_m . Inparticular examples are given when the group G is cyclic of order n or the dihedral group D_n of order 2n.

KEYWORDSCharacter group, group algebra, semi–simple, primitive idempotents,cyclic group of order n, dihedral group D_n.

INTRODUCTION

Let R be a commutative ring with unity 1_R . Suppose that we are given a group G. By a group algebra RG of G over R .We mean an algebraic structure consisting of all formal linear combinations

$$X = \sum_{g \in G} X_{g}.g, \qquad X_{g} \in R$$
 with finitely many $X_{g} \neq O_{R}$

$$Y = \sum_{g \in G} y_g.g$$
 $Y_g \neq O_R$ is a second element of RG, then by definition X=Y if and only if, $X_g = Y_g$

for all $g \in G$. As an illustration, we take the case when G is a cyclic group of order n. Let g be a generator for G so that $g^n = e$. The mapping

 $f: G \rightarrow R[X] / (X^{n} - 1)$ is given by $f(g) = X + (X^{n} - 1)$(1) That is f(g) is the cosets $X + (X^{n} - 1)$ in the quotient ring $R[X] / (X^{n} - 1)$. (1) is an injective homomorphism whose image is an R- basis for $R[X] / (X^{n} - 1)$. Then $R[X] / (X^{n} - 1)$ is isomorphic to the group algebra RG in [4] This takes us to the study of cyclic codes of length n over a finite field F_{q} .

1.1 DEFINITIONAn element $r \in R$ is called an idempotent if $r^2 = r$.

1.2 DEFINITIONTwo idempotent u, $v \in R$ are said to be orthogonal if u $v = O_R$

1.3 DEFINITIONA non zero idempotent u is called 'primitive 'if it cannot written as a sum of two non zero orthogonal idempotent. The motivation for this note is from the interesting papers of [5] on primitive idempotent of a group algebra, cyclic codes of length 2^m [7] minimal codes of prime power of length [8] and minimal cyclic codes of length $2p^n$ [6]. Their approach is via the notion of q-cyclotomiccosets modulo n. But it appears that a fall system of primitive idempotent of a group algebra FG could be obtained via the notion of group characters. We are attempting a study of primitive idempotent of the group algebra F_qC_m where C_m is a cyclic group of order m. We also consider the group algebra F_qD_n where D_n is dihedral group of order 2n.

2. PRELIMINARIES

We consider only commutative rings with identity 1 $_{\mbox{\tiny R}}$

2.1 DEFINITIONAn ideal I of R is called a minimal ideal if $I \neq (O_R)$ and for every ideal J such that $(O_R) \subset J$ $\subset I$ either J = (O_R) or J= I.

2.2 DEFINITIONA ring R is said to satisfy the descending chain condition on ideals if for every chain $I_1 \supset I_2 \supset I_3 \supset \dots \dots$ of ideals of R,there is an integer m such that $I_j = I_m$ for all $j \ge m$.

2.3 DEFINITIONA ring R is called an Artinian ring if R satisfies the descending chain condition on ideals.

2.4 DEFINITIONLet R be a ring .An element $X \in R$ is called a nilpotent element if $X^n = O_R$ for some $n \ge 1$.

2.5 DEFINITIONThe ideal N (R) is called the nil radical of R it is known that the nil radical of R is the intersection of all prime ideals of R.

2.6 DEFINITION The Jacobson radical J(R) of R is defined as the intersection of all the maximal ideals of R.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

2.7 DEFINITION

A ring R is said to be semi simple if its Jacobson radical J (R) is (O_R).

2.8 DEFINITION

Given a ring R and an element $e \in R$ such that $e^2 = e$ then e is called an idempotent element of R, O_R and 1_R are trivial idempotent.

2.9 DEFINITION

Let G be a group and let F be a field F * = F $\{0_F\}$ a linear character X of G over F is a homomorphism $\chi : G \rightarrow F^*$.

If G is a finite group the values taken on by a character χ are a roots of the identity 1_F of F since any element $g \in G$ is of finite order say k and so

 $\chi(g^k) = \chi(e) = \mathbf{1}_F$ and $\chi(g^k) = \chi(g)$.

THEOREMS ON SPECIAL CASES

As considered earlier, q denotes a prime power say t^s . The nonzero elements of F_q will form a cyclic group of order q-1. The nonzero elements are $(q - 1)^{th}$ roots of unity. Suppose that m is an integer > 1. Let m <q, If $F_q^* = F_q \setminus \{0_F\}$ is to contain m^{th} roots of unity, q has to be chosen suitably.

2.10 LEEMA

Let q = t^s where t is a prime and s ≥ 1 , F_q^* denotes the non zero elements of F_q

Let m< q Then F_q^* contains the m^{th} roots of unity if and only if q = 1(mod m).

Proof If $q \equiv 1 \pmod{m}$, m divides q-1 and so let q-1 = mm'.if ζ is an m^{th} root of unity $\zeta^m = 1$ implies that $\zeta^{mm'} = 1$ and so $\zeta^{q-1} = 1$. So an m^{th} root of unity is contained in a $(q-1)^{th}$ root of unity.

Conversely, if ζ is a $(q-1)^{th}$ root of unity and if the set of $(q-1)^{th}$ roots of unity contains m^{th} root of unity, then an m^{th} root of unity ζ is such that $\zeta^{mm'} = 1$ and mm' = (q-1) or $q-1 \equiv 0 \pmod{m}$.

Next we recall that when R is a commutative ring with unity 1_R nd G is a group, the group algebra RG is a free module on the elements of G. When R is a finite field say F_q (q = t^s , t is a prime $s \ge 1$) and G is a

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

finite group of order n written of the formal sums $\sum_{g \in G} X_g g$ with $x_q \in F_q$ the number of elements in the group algebra $F_q G$ is q^n . That is ,when we form $e_x = 1/|G| \sum_{g \in G} \zeta(g-1)g$, $\zeta \in$ char (G) the collection of $\{e_x | \zeta \in Char(G)\}$ forms an orthogonal basis for the group algebra $F_q G$. This collection is a unique set of primitive idempotent of $F_q G$.

Next, we go to the case of dihedral group D_n is generated by two elements x,y which satisfy $x^n \in y^2 =$ \notin , xy = x^{-1} y In particular $D_n = \{ \notin x, x^2, \dots, x^{n-1}; y, xy, x^2y, \dots, x^{n-1}y \}$ It is clear that $|D_n| = 2n$ in [1]. We apply the theorem on primitive idempotent to the group algebra $F_q D_n$ where F_q contains a primitive $2n^{th}$ root of unity . If q is n odd prime power (q-1) is even and so 2n divids (q-1) if and only if n divides $\frac{(q-1)}{2}$. If q is odd and 2n < q, 2n divides d if and only if

 $q \equiv 1 \pmod{2n}$.

REFEREENCES

 Michael Artin., ALGEBRA, Prentice Hall of India Private Ltd, New Delhi-110001(1994) Chapter Section 3, 4 pp 162-174.

[2] Carry Huffman.w.,V.Pless.G., Fundamentals of Error- Correcting Codes ,Cambridge

University Press(2004) Chapter 4 pp 121-158.

[3] T.W.Hungerford., ALGEBRA, GTM No: Springer Verlag(1984)Chapter IX pp 414-463.
[4] G.Karpilovsky., Commutative group algebrasMonographs and Textbooks in Pune and Applied Mathematics No:78(1983) Marvel Dekker line Chapters 2,3 pp 27-67.

 [5] S.K.Arora., SridhirBatra., ManjuPreethi., The primitive idempotent of a cyclic group Algebra South East Asian Bulletin of Mathematics (2002) No:26pp 549-557.

[6] S.k.Arora., ManjuPreethi., Minimal Cyclic codes of length 2p finite fields and their Application Vol III No.4 (2011)pp 177-187.

[7] ManjuPreethi., Cyclic Codes of length 2 Proc.Ind. Acad.Sir(Math.Sci)Vol III No:4(2011) pp 371-379.

[8] ManjuPreethi., S.k.Arora., Minimal Codes of Prime-power length Finite fields and their Applications Vol 3(1997) pp 99-113.