

α_a open sets and βq open sets in Quad Topological Space

U.D.Tapi¹, **Ranu Sharma²**, **(Corresponding author) and Bhagyashri A. Deole³**, ^{1,2,3}Department of Applied Mathematics and Computational Science, SGSITS, Indore (M.P.), India,

Abstract

The main aim of this paper is to introduce new types of open sets namely α_q open sets and βq open sets in quad topological spaces along with their several properties and characterization .As application to α_q open sets and βq open sets we introduce α_q continuous functions, βq continuous functions and obtainsome of their basic properties.

Keywords: α_a open sets, α_a continuous function and βq open sets, βq continuous function,,

AMS Mathematics Subject Classification (2010): 54A40

Introduction

In 1965 Njastad [8] introduced generalization of open set in topological space called pre semi open sets (α open sets). In 1990, M. Jelic [3] introduced the concept of α open sets in bitopological spaces. The concept of bitopological spaces was introduced by J.C. Kelly [4]. In 1986, D. Andrijevic [1] was introduced semi-pre open sets (β open sets) in topological spaces. F.H. Khedr, S.M. Al-Areefi and T. Noiri [5] generalized the notion of semi pre open sets to bitopological spaces and semi pre continuity in bitopological spaces. Tri topological space is a generalization of bitopological space. The study of tritopological space was first initiated by Martin M. Kovar [6]. S. Palaniammal [9] studied tri topological space. N. F. Hameed and Moh. Yahya Abid [2] defined 123 open set in tri topological space. we [10] introduced α_T open set in tri topological space. We [11] introduce β_T open set in tri topological space. The purpose of the present paper is to introduce α_q and β_q open set in quad topological space. The purpose of the present paper is to introduce α_q and β_q open set and α_q and β_q continuity and their fundamental properties in quad topological space.

1. Preliminaries

Definition 1.1[8]: A subset A of a topological space (X, τ) is called pre-semi open set (α open sets) if $A \subseteq int(cl(int A))$. The complement of pre semi open set is called pre-semi closed set. The class of all pre-semi open sets of X is denoted by $PSO(X, \tau)$.

Definition 1.2[1]: A subset A of a topological space (X, τ) is called semi-pre open set (β open sets) if $A \subseteq cl(int(clA))$. The complement of semi-pre open set is called semi-pre closed set. The class of all semi pre open sets of X is denoted by $SPO(X, \tau)$.

Definition 1.3[10]: Let (X, T_1, T_2, T_3) be a tri topological space. A subset A of X is called α_T open in X, if $A \subseteq ps$ int psclps int A. The complement of α_T open set is called α_T closed set. The collection of all α_T open sets of X is denoted by $PSO(X, T_1, T_2, T_3)$.

Definition 1.4[11]: Let (X, T_1, T_2, T_3) be a tri topological space. A subset A of X is called β_T open in X, if $A \subseteq spclsp \text{ int } spclA$. The complement of β_T open set is called β_T closed set. The collection of all β_T open sets of X is denoted by $SPO(X, T_1, T_2, T_3)$.

Definition 1.5 [7] :Let X be a nonempty set and T_1, T_2, T_3 and T_3 are general topologies on X. Then a subset A of space X is said to be quad-open(q-open) set if $A \subset T_1 \cup T_2 \cup T_3 \cup T_4$ and its complement is said to be q-closed and set X with four topologies called quad topological spaces (X, T_1, T_2, T_3, T_4) . q-open sets satisfy all the axioms of topology.

2. α_a open set in quad topological space

Definition 2.1: Let (X, T_1, T_2, T_3, T_4) be a quad topological space. A subset A of X is called α_q open in X, if $A \subseteq p_q s_q$ int $p_q s_q clp_q s_q$ int A. The complement of α_q open set is called α_q closed set. The collection of all α_q open sets of X is denoted by $p_q s_q O(X, T_1, T_2, T_3)$.

Example 2.2:Let $X = \{a, b, c, d\}$, $T_1 = \{X, \phi, \{a\}\}$, $T_2 = \{X, \phi, \{a, b, c\}\}$, $T_3 = \{X, \phi, \{b, c, d\}\}$, $T_4 = \{X, \phi, \{b, c\}\}$

q- open sets in quad topological spaces are union of all four topologies.

 α_q open set of X is denoted by $p_q s_q O(X) = \{X, \phi, \{a\}, \{a, b, c\}, \{b, c, d\}, \{b, c\}\}$. Let $A = \{a, b, c\}$;

 $p_q s_q$ int $p_q s_q c l p_q s_q$ int $\{a, b, c\} = p_q s_q$ int $p_q s_q c l \{a, b, c\}$

 $= p_q s_q \text{ int } X$ = X

 $A = \{a, b, c\}$ is α_q open.

Definition 2.3: Let (X, T_1, T_2, T_3, T_4) be a quad topological space. Let $A \subset X$. An element $x \in A$ is called α_q interior point of A, if there exist a α_q open set U such that $x \in U \subset A$. The set of all α_q interior points of A is called the α_q interior of A and is denoted by $p_q s_q \operatorname{int}(A)$.

Theorem 2.4: Let $A \subset X$ be a quad topological space. $p_q s_q \operatorname{int}(A)$ is equal to the union of all α_q open sets contained in A.

Note 2.5: 1. $p_q s_q \text{ int}(A) \subset A$.

2. $p_q s_q \operatorname{int}(A)$ is α_q open sets.

Theorem 2.6: $p_q s_q \operatorname{int}(A)$ is the largest α_q open sets contained in A.

Theorem 2.7: A is α_a open if and only if $A = p_a s_a \operatorname{int}(A)$

Theorem 2.8: $p_q s_q \operatorname{int}(A \cup B) \supset p_q s_q \operatorname{int} A \cup p_q s_q \operatorname{int} B$.

Definition 2.9: Let (X, T_1, T_2, T_3, T_4) be a quad topological space. Let $A \subset X$. The intersection of all α_q closed sets containing A is called a α_q closure of A and is denoted as $p_q s_q cl(A)$.

Note 2.10: Since intersection of α_q closed sets is α_q closed set, $p_q s_q cl(A)$ is a α_q closed set.

Note 2.11: $p_a s_a cl(A)$ is the smallest α_a closed set containing A.

Theorem 2.12: A is α_a closed set if and only if $A = p_a s_a cl(A)$.

Theorem 2.13: Let A and B be subsets of (X, T_1, T_2, T_3, T_4) and $x \in X$

a) If $A \subset B$, then $p_q s_q cl(A) \subset p_q s_q cl(B)$.

b) $x \in p_q s_q cl(A)$ if and only if $A \cap U \neq \phi$ for every α_q open set U containing x.

Theorem 2.14: Let *A* be a subsets of (X, T_1, T_2, T_3, T_4) , if there exist an α_q open set *U* such that $A \subset U \subset p_q s_q cl(A)$, then *A* is α_q open.

Theorem 2.15: In a quad topological space (X, T_1, T_2, T_3, T_4) , the union of any two α_q open sets is always an α_q open set.

Proof: Let A and B be any two α_a open sets in X.

Now $A \cup B \subseteq p_q s_q cl(p_q s_q \operatorname{int}(A)) \cup p_q s_q cl(p_q s_q \operatorname{int}(B))$

 $\Rightarrow A \cup B \subseteq p_a s_a cl(int(A \cup B)).$ Hence $A \cup B$ is α_a open sets.

Theorem 2.16: Let A and B be subsets of X such that $B \subseteq A \subseteq p_q s_q cl(B)$ if B is α_q open set then A is also α_q open set.

3. α_{q} Continuity in quad topological space

Definition 3.1: A function f from a quad topological space (X, T_1, T_2, T_3, T_4) into another quad topological space (Y, W_1, W_2, W_3, W_4) is called α_q continuous if $f^{-1}(V)$ is α_q open set in X for each quad open set V in Y.

Example 3.2: Let, $X = \{a, b, c, d\}$, $T_1 = \{X, \phi\}$, $T_2 = \{X, \phi, \{a\}, \{b, c\}\}$, $T_3 = \{X, \phi, \{a, b, c\}\}, T_4 = \{X, \phi, \{a, d\}\}$

Open sets in quad topological spaces are union of all four topologies.

Then quad open sets of $X = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}, \{a, d\}\}$.

 $p_{a}s_{a}O(X)$ sets of $X = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}, \{a, d\}\}.$

Let $Y = \{1, 2, 3, 4\}$, $W_1 = \{Y, \phi\}$, $W_2 = \{Y, \phi, \{1\}, \{2, 3\}\}$, $W_3 = \{X, \phi, \{1, 2, 3\}\}, W_4 = \{X, \phi, \{1, 4\}\}$

quad open sets of $Y = \{Y, \phi, \{1\}, \{2,3\}, \{1,2,3\}, \{1,4\}\}$.

 $p_q s_q O(Y)$ sets of $Y = \{Y, \phi, \{1\}, \{2, 3\}, \{1, 2, 3\}, \{1, 4\}\}$.

Consider the function $f: X \to Y$ is defined as

 $f^{-1}{1} = \{a\}, f^{-1}{2,3} = \{b,c\}, f^{-1}{1,2,3} = \{a,b,c\}, f^{-1}(a,d) = \{1,4\}, f^{-1}(\phi) = \phi, f^{-1}(Y) = X.$

Since the inverse image of each quad open set in Y under f is α_q open set in X. Hence f is α_q continuous function.

Theorem 3.3: Let $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ be a α_q continuous open function . If A is an α_q open set of X, then f(A) is α_q open in Y.

Proof: First , let A be α_q open set in X. There exist an quad open set U in X such that $A \subset U \subset p_q s_q cl(A)$. since f is α_q open function then f(U) is quad open in Y. Since f is α_q continuous function, we have $f(A) \subset f(U) \subset f(p_q s_q cl(A)) \subset p_q s_q cl(f(A))$. This show that f(A) is α_q open in Y. Let A be α_q open in X. There exist an α_q open set U such that $U \subset A \subset (p_q s_q cl(U))$. Since f is α_q continuous function, we have $f(U) \subset f(A) \subset f(P_q s_q cl(D)) \subset p_q s_q cl(f(U))$. Since f is α_q continuous function, we have $f(U) \subset f(A) \subset f(P_q s_q cl(U)) \subset p_q s_q cl(f(U))$. by the proof of first part, f(U) is α_q open in X. Therefore, f(A) is α_q open in Y.

Theorem 3.4: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological space . Then $f: X \to Y$ is α_a continuous function if and only if $f^{-1}(V)$ is α_a closed in X whenever V is quad closed in Y.

Theorem 3.5: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological spaces. A function $f: X \to Y$ is α_q continuous if and only if the inverse image of every α_q open set in Y is quad open in X. **Theorem 3.6:** Let $f: (X, T_1, T_2, T_3, T_4) \to (Y, W_1, W_2, W_3, W_4)$ be a α_q continuous open function . If V is an α_q open set of Y, then $f^{-1}(V)$ is α_q open in X.

Proof: First , let V be α_q open set of Y. There exist an α_q set W in Y . such that $V \subset W \subset p_q s_q cl(V)$. Since f is quad open set , we have $f^{-1}(V) \subset f^{-1}(W) \subset f^{-1}(p_q s_q cl(V)) \subset p_q s_q cl(f^{-1}(V))$. since f is α_q continuous, $f^{-1}(W)$ is α_q open set in X. By theorem 2.14, $f^{-1}(V)$ is α_q open set in X. The proof of the second part is shown by using the fact of first part.

Theorem 3.7: The following are equivalent for a function $f: (X, T_1, T_2, T_3, T_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$:

- a) f is α_q continuous function ;
- b) the inverse image of each $\alpha_{_q}$ closed set of Y is $\alpha_{_q}$ closed in X ;

- c) For each $x \in X$ and each quad open set V in W containing f(x), there exist an α_q open set U of X containing x such that $f(U) \subset V$;
- d) $p_a s_a cl(f^{-1}(B)) \subset f^{-1}(p_a s_a cl(B))$ for every subset B of Y.
- e) $f(p_a s_a cl(A)) \subset p_a s_a cl(f(A))$ for every subset A of X.

Theorem 3.8: If $f:(X, P_1, P_2, P_3, P_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$ and $g:(Y, W_1, W_2, W_3, W_4) \rightarrow (Z, \eta_1, \eta_2, \eta_3, \eta_4)$ be two α_q continuous function then $gof:(X, P_1, P_2, P_3, P_4) \rightarrow (Z, \eta_1, \eta_2, \eta_3, \eta_4)$ may not be α_q continuous function.

Theorem 3.9: Let $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ be bijective .Then the following conditions are equivalent:

- i) f is α_a open continuous function.
- ii) f is α_{q} closed continuous function and
- iii) f^{-1} is α_q continuous function.

Proof:(i) \rightarrow (ii) Suppose *B* is a quad closed set in *X*. Then *X*-*B* is an quad open set in *X*. Now by (i) f(X-B) is a α_q open set in *Y*. Now since *f* is bijective so f(X-B) = Y - f(B). Hence f(B) is a α_q closed set in *Y*. Therefore *f* is a α_q closed continuous function.

(ii) \rightarrow (iii) Let f is an α_q closed map and B be α_q closed set of X. Since f^{-1} is bijective so $(f^{-1})^{-1}(B)$ which is an α_q closed set in Y. Hence f^{-1} is α_q continuous function.

(iii) \rightarrow (i) Let A be a quad open set in X. Since f^{-1} is a α_q continuous function so $(f^{-1})^{-1}(A) = f(A)$ is a α_q open set in Y. Hence f is α_q open continuous function.

Theorem 3.10: Let X and Y are two quad topological spaces. Then $f:(X, P_1, P_2, P_3, P_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$ is α_q continuous function if one of the followings holds:

- a) $f^{-1}(p_a s_a \operatorname{int}(B)) \subseteq p_a s_a \operatorname{int}(f^{-1}(B))$, for every quad open set $B \operatorname{in} Y$.
- b) $p_a s_a cl(f^{-1}(B)) \subseteq f^{-1}(p_a s_a cl(B))$, for every quad open set B in Y.

Proof: Let *B* be any quad open set in *Y* and if condition (i) is satisfied then $f^{-1}(p_a s_a \operatorname{int}(B)) \subseteq p_a s_a \operatorname{int}(f^{-1}(B))$.

We get $f^{-1}(B) \subseteq p_q s_q$ int $(f^{-1}(B))$. Therefore $f^{-1}(B)$ is a quad pre semi open set in X. Hence f is α_q continuous function. Similarly we can prove (ii).

Theorem 3.11: A function $f:(X, P_1, P_2, P_3, P_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$ is called α_q open continuous function if and only if $f(p_q s_q \operatorname{int}(A)) \subseteq p_q s_q \operatorname{int}(f(A))$, for every α_q open set A in X.

Proof: Suppose that f is a α_a open continuous function.

Since $p_q s_q \operatorname{int}(A) \subseteq A$ so $f(p_q s_q \operatorname{int}(A)) \subseteq f(A)$.

By hypothesis $f(p_q s_q \operatorname{int}(A))$ is an α_q open set and $p_q s_q \operatorname{int}(f(A))$ is largest α_q open set contained in f(A) so $f(p_q s_q \operatorname{int}(A)) \subseteq p_q s_q \operatorname{int}(f(A))$.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com

Conversely, suppose A is an α_q open set in X. So $f(p_q s_q \operatorname{int}(A)) \subseteq p_q s_q \operatorname{int}(f(A))$.

Now since $A = p_q s_q \operatorname{int}(A)$ so $f(A) \subseteq p_q s_q \operatorname{int}(f(A))$. Therefore f(A) is a α_q open set in Y and f is α_q open continuous function.

Theorem 3.12: A function $f:(X, P_1, P_2, P_3, P_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$ is called α_q closed continuous function if and only if $p_q s_q cl(f(A)) \subseteq f(p_q s_q cl(A))$, for every α_q closed set A in X.

Proof: Suppose that f is a α_q closed continuous function. Since $A \subseteq p_q s_q cl(A)$ so $f(A) \subseteq f(pscl(A))$. By hypothesis, $f(p_q s_q cl(A))$ is a α_q closed set and $p_q s_q cl(f(A))$ is smallest α_q closed set containing f(A) so $p_q s_q cl(f(A)) \subseteq f(p_q s_q cl(A))$.

Conversely, suppose A is an α_q closed set in X. So $p_q s_q cl(f(A)) \subseteq f(p_q s_q cl(A))$.

Since $A = p_q s_q cl(A)$ so $p_q s_q cl(f(A)) \subseteq f(A)$. Therefore f(A) is a α_q closed set in Y and f is α_q closed continuous function.

Theorem 3.13: Let (X,T_1,T_2,T_3,T_4) and (Y,W_1,W_2,W_3,W_4) be two quad topological space. Then, $f: X \to Y$ is α_q continuous function if and only if $f(p_q s_q cl(A)) \subset p_q s_q cl(f(A)) \forall A \subset X$.

Proof: Suppose $f: X \to Y$ is α_q continuous function. Since $p_q s_q cl[f(A)]$ is α_q closed in Y. Then by theorem (3.4) $f^{-1}[p_q s_q cl(f(A))]$ is α_q closed in X,

$$\begin{split} p_q s_q cl(f^{-1}(p_q s_q clf(A))) &= f^{-1}(p_q s_q clf(A)) - - - - (\mathbf{1}). \\ \text{Now} : f(A) &\subset p_q s_q cl(f(A)), \ A \subset f^{-1}(f(A)) \subset f^{-1}(p_q s_q clf(A)). \\ \text{Then} \ p_q s_q cl(A) \subset p_q s_q cl(f^{-1}(p_q s_q clf(A))) = f^{-1}(p_q s_q clf(A)) \text{ by (1)}. \\ \text{Then} \ f(p_q s_q cl(A)) \subset p_q s_q cl(f(A)). \\ \text{Conversely, Let} \ f(p_q s_q cl(A)) \subset p_q s_q cl(f(A)) \forall A \subset X. \\ \text{Let} \ F \ be \ \alpha_q \ \text{closed set in } Y, \text{ so that} \ p_q s_q cl(F) = F. \\ \text{Now} \ f^{-1}(F) \subset X \ , \text{ by hypothesis,} \\ f(p_q s_q cl(f^{-1}(F))) \subset p_q s_q cl(f(f^{-1}(F))) \subset p_q s_q cl(F) = F. \\ \text{Therefore} \ p_q s_q cl(f^{-1}(F) \subset f^{-1}(F). \\ \text{But} \ f^{-1}(F) \subset p_q s_q cl(f^{-1}(F)). \\ \text{Hence} \ p_q s_q cl(f^{-1}(F)) = f^{-1}(F) \ \text{and so} \ f^{-1}(F) \ \text{is} \ \alpha_q \ \text{closed in } X. \\ \text{Hence by theorem (2.4) fix a constinue function.} \end{split}$$

Hence by theorem (3.4) f is α_q continuous function.

Theorem 3.14: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological spaces. Then, $f: X \to Y$ is α_q continuous function if and only if $p_q s_q cl(f^{-1}(B)) \subset f^{-1}(p_q s_q cl(B)) \forall B \subset Y$. **Proof:** Suppose $f: X \to Y$ is α_q continuous. Since $p_q s_q cl(B)$ is α_q closed in Y, then by theorem (3.4)

 $f^{-1}(p_q s_q cl(B)) \text{ is } \alpha_q \text{ closed in } X \text{ and therefore , } p_q s_q cl(f^{-1}(p_q s_q cl(B))) = f^{-1}(p_q s_q cl(B)).....(2)$ $Now, B \subset p_q s_q cl(B), \text{then } f^{-1}(B) \subset f^{-1}(p_q s_q cl(B)), \text{then}$ $p_q s_q cl(f^{-1}(B)) \subset p_q s_q cl(f^{-1}(p_q s_q cl(B))) = f^{-1}(p_q s_q cl(B)) \text{ by } (2)$

Conversely: Let the condition hold and let F be any quad closed set in Y so that $p_q s_q cl(F) = F$. By hypothesis, $p_q s_q cl(f^{-1}(F)) \subset f^{-1}(p_q s_q cl(F)) = f^{-1}(F)$. But $f^{-1}(F) \subset p_q s_q cl(f^{-1}(F))$ always. Hence $p_q s_q cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is α_q closed in X. It follows from theorem (3.4) that f is α_q continuous function.

Theorem 3.15 Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological spaces. Then, $f: X \to Y$ is α_q continuous open function if and only if $f^{-1}(p_q s_q \operatorname{int}(B)) \subset p_q s_q \operatorname{int}(f^{-1}(B)) \quad \forall B \subset Y$.

Proof: Let $f: X \to Y$ be a quad continuous. Since $p_q s_q \operatorname{int}(B)$ is α_q open in Y, then by theorem (3.3) $f^{-1}(p_q s_q \operatorname{int}(B))$ is α_q open in X and therefore, $p_q s_q \operatorname{int}(f^{-1}(p_q s_q \operatorname{int}(B))) = f^{-1}(p_q s_q \operatorname{int}(B))$(3) Now, $p_q s_q \operatorname{int}(B) \subset B$, then $f^{-1}(p_q s_q \operatorname{int}(B)) \subset f^{-1}(B)$, then $p_q s_q \operatorname{int}(f^{-1}(p_q s_q \operatorname{int}(B))) \subset p_q s_q \operatorname{int}(f^{-1}(B))$ by (3)

Conversely: Let the condition hold and let *G* be any α_q open set in *Y* so that $p_q s_q \operatorname{int}(G) = G$. By hypothesis, $f^{-1}(p_q s_q \operatorname{int}(G)) \subset p_q s_q \operatorname{int} f^{-1}(G)$. Since $f^{-1}(p_q s_q \operatorname{int}(G)) = f^{-1}(G)$ then

 $f^{-1}(G) \subset p_q s_q \operatorname{int}(f^{-1}(G)) \operatorname{But} p_q s_q \operatorname{int}(f^{-1}(G)) \subset f^{-1}(G) \operatorname{always}$ and so $p_q s_q \operatorname{int}(f^{-1}(G)) = f^{-1}(G)$. Therefore $f^{-1}(G)$ is α_q open in X. Consequently by theorem (3.3) f is α_q continuous function.

4. β_{a} open sets in quad topological space

Definition 4.1: Let (X, T_1, T_2, T_3, T_4) be a quad topological space. A subset A of X is called β_q open in X, if $A \subseteq s_q p_q cls_q p_q$ int $s_q p_q clA_1$. The complement of β_q open set is called β_q closed set. The collection of all β_q open sets of X is denoted by $S_q P_q O(X, T_1, T_2)$.

Example 4.2: Let $X = \{a, b, c, d\}$, $T_1 = \{X, \phi, \{a\}, \{a, b, d\}\}$, $T_2 = \{X, \phi, \{a, d\}\}$, $T_3 = \{X, \phi, \{b\}\}$ $T_4 = \{X, \phi, \{a, b\}\}$

Quad open sets in quad topological spaces are union of all four topologies.

 β_q Open set of X is denoted by $s_q p_q O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}\}$.

Let $A = \{a\}$;

 $s_a p_a cls_a p_a \text{ int } s_a p_a cl\{a\} = s_a p_a cls_a p_a \text{ int } X$

$$= s_q p_q c l X$$
$$- Y$$

 $A = \{a\}$ is β_q open.

Definition 4.3: Let (X, T_1, T_2, T_3, T_4) be a quad topological space. Let $A \subset X$. An element $x \in A$ is called β_q interior point of A, if there exist a β_q open set V such that $x \in V \subset A$. The set of all β_q interior points of A is called the β_q interior of A and is denoted by $s_q p_q$ int(A).

Theorem 4.4: Let $A \subset X$ be a quad topological space. $s_q p_q \operatorname{int}(A)$ is equal to the union of all β_q open sets contained in A.

Note 4.5: 1. $s_q p_q \text{ int}(A) \subset A$.

2. $s_a p_a \operatorname{int}(A)$ is β_a open sets.

Theorem 4.6: $s_q p_q \operatorname{int}(A)$ is the largest β_q open sets contained in A.

Theorem 4.7: A is β_q open if and only if $A = s_q p_q$ int(A)

Theorem 4.8: $s_q p_q \operatorname{int}(A \cup B) \supset s_q p_q \operatorname{int} A \cup s_q p_q \operatorname{int} B$.

Definition 4.9: Let (X,T_1,T_2,T_3,T_4) be a quad topological space. Let $A \subset X$. The intersection of all β_q closed sets containing A is called a β_q closure of A and is denoted as $s_a p_a cl(A)$.

Note 4.10 : Since intersection of β_q closed sets is β_q closed set, $s_q p_q cl(A)$ is a β_q closed set.

Note 4.11: $s_a p_q cl(A)$ is the smallest β_q closed set containing A.

Theorem 4.12: A is β_q closed set if and only if $A = s_q p_q cl(A)$.

Theorem 4.13: Let A and B be subsets of (X, T_1, T_2, T_3, T_4) and $x \in X$

a) If $A \subset B$, then $s_q p_q cl(A) \subset s_q p_q cl(B)$.

b) $x \in s_a p_a cl(A)$ if and only if $A \cap U \neq \phi$ for every β_a open set U containing x.

Theorem 4.14: Let *A* be a subsets of (X, T_1, T_2, T_3, T_4) , if there exist an β_q open set *U* such that $A \subset U \subset s_q p_q cl(A)$, then *A* is β_q open.

Theorem 4.15: In a quad topological space (X, T_1, T_2, T_3, T_4) , the union of any two β_q open sets is always an β_q open set.

Theorem 4.16: Let A and B be subsets of X such that $B \subseteq A \subseteq s_q p_q cl(B)$ if B is β_q open set then A is also β_q open set.

5. β_T Continuity in quad topological space

Definition 5.1: A function f from a quad topological space (X, T_1, T_2, T_3, T_4) into another quad topological space (Y, W_1, W_2, W_3, W_4) is called β_q continuous if $f^{-1}(V)$ is β_q open set in X for each quad open set V in Y.

Example 5.2: Let, $X = \{a, b, c, d\}$, $T_1 = \{X, \phi\}$, $T_2 = \{X, \phi, \{d\}\}$, $T_3 = \{X, \phi, \{c, d\}\}$, $T_4 = \{X, \phi, \{c\}\}$

Open sets in quad topological spaces are union of four topologies.

Then quad open sets of $X = \{X, \phi, \{d\}, \{c\}, \{c, d\}\}$.

 $s_q p_q O(X)$ sets of $X = \{X, \phi, \{d\}, \{c\}, \{c, d\}\}.$

Let $Y = \{1, 2, 3, 4\}$, $W_1 = \{Y, \phi\}$, $W_2 = \{Y, \phi, \{1\}\}$, $W_3 = \{Y, \phi, \{2\}\}$, $W_4 = \{Y, \phi, \{1, 2\}\}$

quad open sets of $Y = \{Y, \phi, \{1\}, \{2\}, \{1, 2\}\}$.

 $s_q p_q O(Y)$ sets of $Y = \{Y, \phi, \{1\}, \{2\}, \{1, 2\}\}$.

Consider the function $f: X \rightarrow Y$ is defined as

 $f^{-1}\{1\} = \{c\}, f^{-1}\{2\} = \{d\}, f^{-1}\{1,2\} = \{c,d\}, f^{-1}(\phi) = \phi, f^{-1}(Y) = X.$ Since the inverse image of each quad open set in Y under f is β_q open set in X. Hence f is β_q continuous function.

Theorem 5.3: Let $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ be a β_q continuous open function . If A is an α_q open set of X, then f(A) is β_q open in Y.

Proof: First , let A be β_q open set in X. There exist an quad open set U in X such that $A \subset U \subset s_q p_q cl(A)$. since f is β_q open function then f(U) is quad open in Y. Since f is β_q continuous function, we have $f(A) \subset f(U) \subset f(s_q p_q cl(A)) \subset s_q p_q cl(f(A))$. This show that f(A) is β_q open in Y. Let A be β_q open in X. There exist an β_q open set U such that $U \subset A \subset (p_q s_q cl(U))$. Since f is β_q continuous function, we have $f(U) \subset f(A) \subset f(s_q p_q cl(U)) \subset s_q p_q cl(f(U))$. By the proof of first part, f(U) is β_q open in X. Therefore, f(A) is β_q open in Y.

Theorem 5.4: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological space . Then $f: X \to Y$ is β_q continuous function if and only if $f^{-1}(V)$ is β_q closed in X whenever V is quad closed in Y.

Theorem 5.5: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological spaces. A function $f: X \to Y$ is β_q continuous if and only if the inverse image of every β_q open set in Y is quad open in X.

Theorem 5.6: Let $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ be a β_q continuous open function . If V is an β_q open set of Y, then $f^{-1}(V)$ is β_q open in X.

Proof: First , let V be β_q open set of Y. There exist an β_q set W in Y. such that $V \subset W \subset s_q p_q cl(V)$. Since f is quad open set , we have $f^{-1}(V) \subset f^{-1}(W) \subset f^{-1}(s_q p_q cl(V)) \subset s_q p_q cl(f^{-1}(V))$. since f is β_q continuous, $f^{-1}(W)$ is β_q open set in X. By theorem 4.14, $f^{-1}(V)$ is β_q open set in X. The proof of the second part is shown by using the fact of first part.

Theorem 5.7: The following are equivalent for a function $f: (X, T_1, T_2, T_3, T_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$:

- f) f is β_q continuous function ;
- g) The inverse image of each β_q closed set of Y is β_q closed in X;
- h) For each $x \in X$ and each quad open set V in W containing f(x), there exist an β_q open set U of X containing x such that $f(U) \subset V$;
- i) $s_q p_q cl(f^{-1}(B)) \subset f^{-1}(s_q p_q cl(B))$ for every subset B of Y.
- j) $f(s_q p_q cl(A)) \subset s_q p_q cl(f(A))$ for every subset A of X.

Theorem 5.8: If $f:(X, P_1, P_2, P_3, P_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$ and $g:(Y, W_1, W_2, W_3, W_4) \rightarrow (Z, \eta_1, \eta_2, \eta_3, \eta_4)$ be two β_q continuous function then $gof:(X, P_1, P_2, P_3, P_4) \rightarrow (Z, \eta_1, \eta_2, \eta_3, \eta_4)$ may not be β_q continuous function.

Theorem 5.9: Let $f:(X, P_1, P_2, P_3, P_4) \rightarrow (Y, W_1, W_2, W_3, W_4)$ be bijective .Then the following conditions are equivalent:

- i) f is β_q open continuous function.
- ii) f is β_q closed continuous function and
- iii) f^{-1} is β_q continuous function.

Proof:(i) \rightarrow (ii) Suppose *B* is a quad closed set in *X*. Then *X* – *B* is an quad open set in *X*. Now by (i) f(X-B) is a β_q open set in *Y*. Now since *f* is bijective so f(X-B) = Y - f(B). Hence f(B) is a β_q closed set in *Y*. Therefore *f* is a β_q closed continuous function.

(ii) \rightarrow (iii) Let f is an β_q closed map and B be β_q closed set of X. Since f^{-1} is bijective so $(f^{-1})^{-1}(B)$ which is an β_q closed set in Y. Hence f^{-1} is β_q continuous function.

(iii) \rightarrow (i) Let A be a quad open set in X. Since f^{-1} is a β_q continuous function so $(f^{-1})^{-1}(A) = f(A)$ is a β_q open set in Y. Hence f is β_q open continuous function.

Theorem 5.10: Let X and Y are two quad topological spaces. Then $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ is β_q continuous function if one of the followings holds:

c) $f^{-1}(s_a p_q \operatorname{int} (B)) \subseteq s_a p_q \operatorname{int} (f^{-1}(B))$, for every quad open set B in Y.

d) $s_q p_q cl(f^{-1}(B)) \subseteq f^{-1}(s_q p_q cl(B))$, for every quad open set B in Y.

Proof: Let *B* be any quad open set in *Y* and if condition (i) is satisfied then $f^{-1}(s_q p_q \operatorname{int}(B)) \subseteq s_q p_q \operatorname{int}(f^{-1}(B))$.

We get $f^{-1}(B) \subseteq s_q p_q$ int $(f^{-1}(B))$. Therefore $f^{-1}(B)$ is a β_q open set in X. Hence f is β_q continuous function. Similarly we can prove (ii).

Theorem 5.11: A function $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ is called β_q open continuous function if and only if $f(s_q p_q \operatorname{int}(A)) \subseteq s_q p_q \operatorname{int}(f(A))$, for every quad open set A in X.

Proof: Suppose that f is a β_a open continuous function.

since $s_a p_a \operatorname{int}(A) \subseteq A$ so $f(s_a p_a \operatorname{int}(A)) \subseteq f(A)$.

By hypothesis $f(s_q p_q \operatorname{int}(A))$ is an β_q open set and $s_q p_q \operatorname{int}(f(A))$ is largest β_q open set contained in f(A) so $f(s_q p_q \operatorname{int}(A)) \subseteq s_q p_q \operatorname{int}(f(A))$.

Conversely, suppose A is an quad open set in X. So $f(s_a p_a \operatorname{int}(A)) \subseteq s_a p_a \operatorname{int}(f(A))$.

Now since $A = s_q p_q \operatorname{int}(A)$ so $f(A) \subseteq s_q p_q \operatorname{int}(f(A))$. Therefore f(A) is a β_q open set in Y and f is β_q open continuous function.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com

Theorem 5.12: A function $f:(X,T_1,T_2,T_3,T_4) \rightarrow (Y,W_1,W_2,W_3,W_4)$ is called β_q closed continuous function if and only if $s_q p_q cl(f(A)) \subseteq f(s_q p_q cl(A))$, for every quad closed set A in X.

Proof: Suppose that f is a β_q closed continuous function. since $A \subseteq s_q p_q cl(A)$ so $f(A) \subseteq f(s_q p_q cl(A))$. By hypothesis, $f(s_q p_q cl(A))$ is a β_q closed set and $s_q p_q cl(f(A))$ is smallest β_q closed set containing f(A) so $s_q p_q cl(f(A)) \subseteq f(s_q p_q cl(A))$.

Conversely, suppose A is an quad closed set in X. So $s_a p_a cl(f(A)) \subseteq f(s_a p_a cl(A))$.

Since $A = s_q p_q cl(A)$ so $s_q p_q cl(f(A)) \subseteq f(A)$. Therefore f(A) is a β_q closed set in Y and f is β_q closed continuous function.

Theorem 5.13: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological space . Then,

 $f: X \to Y$ is β_q continuous function if and only if $f^{-1}(V)$ is β_q closed in X whenever V is quad closed in Y

Theorem 5.14: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological space. Then, $f: X \to Y$ is β_q continuous function if and only if $f(s_q p_q cl(A)) \subset s_q p_q cl(f(A)) \forall A \subset X$.

Proof: Suppose $f: X \to Y$ is β_q continuous function. Since $s_q p_q cl[f(A)]$ is β_q closed in Y. Then by theorem (5.4) $f^{-1}[s_q p_q cl(f(A))]$ is β_q closed in X,

$$s_q p_q cl(f^{-1}(s_q p_q clf(A))) = f^{-1}(s_q p_q clf(A)) - - - -(1).$$

Now: $f(A) \subset s_a p_a cl(f(A)), A \subset f^{-1}(f(A)) \subset f^{-1}(s_a p_a clf(A)).$

Then $s_q p_q cl(A) \subset s_q p_q cl(f^{-1}(s_q p_q clf(A))) = f^{-1}(s_q p_q clf(A))$ by (1).

Then $f(s_q p_q cl(A)) \subset s_q p_q cl(f(A))$.

Conversely, Let $f(s_q p_q cl(A)) \subset s_q p_q cl(f(A)) \forall A \subset X$.

Let F be β_q closed set in Y, so that $s_q p_q cl(F) = F$. Now $f^{-1}(F) \subset X$, by hypothesis,

$$f(s_q p_q cl(f^{-1}(F))) \subset s_q p_q cl(f(f^{-1}(F))) \subset s_q p_q cl(F) = F.$$

Therefore $s_q p_q cl(f^{-1}(F) \subset f^{-1}(F))$. But $f^{-1}(F) \subset s_q p_q cl(f^{-1}(F))$ always.

Hence $s_q p_q cl(f^{-1}(F) = f^{-1}(F)$ and so $f^{-1}(F)$ is β_q closed in X.

Hence by theorem (5.14) f is β_q continuous function.

Theorem 5.15: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological spaces. Then, $f: X \to Y$ is β_q continuous function if and only if $s_q p_q cl(f^{-1}(B)) \subset f^{-1}(s_q p_q cl(B)) \forall B \subset Y$.

Proof: Suppose $f: X \to Y$ is β_q continuous. Since $s_q p_q cl(B)$ is β_q closed in Y, then by theorem (5.4) $f^{-1}(s_q p_q cl(B))$ is β_q closed in X and therefore, $s_q p_q cl(f^{-1}(s_q p_q cl(B))) = f^{-1}(s_q p_q cl(B))$(2) Now, $B \subset s_q p_q cl(B)$ then $f^{-1}(B) \subset f^{-1}(s_q p_q cl(B))$, there $I(f^{-1}(B)) = I(f^{-1}(B)) = I(f^{-1}(B)) = f^{-1}(s_q p_q cl(B))$

then $s_q p_q cl(f^{-1}(B)) \subset s_q p_q cl(f^{-1}(s_q p_q cl(B))) = f^{-1}(s_q p_q clB)$ by (2)

Conversely: Let the condition hold and let F be any quad closed set in Y so that spcl(F) = F. By hypothesis, $s_q p_q cl(f^{-1}(F)) \subset f^{-1}(s_q p_q cl(F)) = f^{-1}(F)$. But $f^{-1}(F) \subset s_q p_q cl(f^{-1}(F))$ always. Hence $s_q p_q cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is β_q closed in X. It follows from theorem (5.6) that f is β_q continuous function.

Theorem 5.16: Let (X, T_1, T_2, T_3, T_4) and (Y, W_1, W_2, W_3, W_4) be two quad topological spaces. Then, $f: X \to Y$ is β_q open continuous function if and only if $f^{-1}(s_q p_q \operatorname{int}(B)) \subset s_q p_q \operatorname{int}(f^{-1}(B)) \quad \forall B \subset Y$.

Proof: Let $f: X \to Y$ be a quad continuous. Since $s_q p_q$ int(*B*) is β_q open in *Y*, then by theorem (5.3) $f^{-1}(s_q p_q \operatorname{int}(B))$ is β_q open in *X* and therefore, $s_q p_q \operatorname{int}(f^{-1}(s_q p_q \operatorname{int}(B))) = f^{-1}(s_q p_q \operatorname{int}(B))$(3) Now, $s_q p_q \operatorname{int}(B) \subset B$, then $f^{-1}(s_q p_q \operatorname{int}(B)) \subset f^{-1}(B)$, then $s_q p_q \operatorname{int}(f^{-1}(s_q p_q \operatorname{int}(B))) \subset s_q p_q \operatorname{int}(f^{-1}(B))$ by (3)

Conversely: Let the condition hold and let *G* be any β_q open set in *Y* so that $s_q p_q$ int(*G*) = *G*. Byhypothesis, $f^{-1}(s_q p_q \operatorname{int}(G)) \subset s_q p_q$ int $f^{-1}(G)$. Since $f^{-1}(s_q p_q \operatorname{int}(G)) = f^{-1}(G)$ then

 $f^{-1}(G) \subset s_q p_q \operatorname{int}(f^{-1}(G)) \operatorname{But} s_q p_q \operatorname{int}(f^{-1}(G)) \subset f^{-1}(G) \operatorname{always}$ and $\operatorname{so} s_q p_q \operatorname{int}(f^{-1}(G)) = f^{-1}(G)$. Therefore $f^{-1}(G)$ is β_q open in X. Consequently by theorem (5.2) f is β_q continuous function.

CONCLUSION: In this paper we studied new forms of α_q open sets and β_q open set in quad topological space. We also studied α_q continuous function and β_q continuous function in quad topological space. It is established that composition of any two α_q open sets is again a α_q open set in quad topological space and composition of any two β_q open sets is again a β_q open set in quad topological space. In α_q continuity, inverse image of every quad open is α_q open set and in β_q continuity, inverse image of every quad open is α_q open set and in β_q continuity, inverse image of every quad open is α_q open set and in β_q continuity, inverse image of every quad open is α_q open set.

REFERENCES

[1] Andrijevic D., Semi-pre open sets, Matematicki Vesnik, 1986, 38, 93, 24-32.

- [2]Hameed N.F. & Mohammed Yahya Abid , Certain types of separation axioms in tri topological spaces, Iraqi journal of science, 2011,Vol 52,(2),212-217.
- [3] Jelic M., A decomposition of pairwise continuity. J. Inst. Math. Comput. Sci. Math. Ser, 1990, 3,25-29.
- [4] Kelly J. C, Bitopological spaces, Proc.LondonMath.Soc., 1963, 3, 17-89.
- [5] Khedr F.H., Al-Areefi S.M. & NoiriT., Pre continuity and semi pre continuity in bitopological spaces Indian J. Pure and Appl. Math., 1992, 23, 625-633.
- [6] Kovar, M, On 3-Topological version of Thet- Reularity, Internat.J. Matj, Sci., 2000,

23(6), 393-398.

- [7] Mukundan D.V., Introduction to Quad topological spaces, Int. Journal of Scientific & Engg. Research, Vol.4,Issue 7,2483-2485,July-2013.
- [8] Njastad O, On some classes of nearly open sets ,Pacific J. Math., 1965, 15, 961-970.
- [9] Palaniammal S., Study of Tri topological spaces, Ph.D Thesis, 2011.
- [10] Tapi U.D. and R. Sharma, α_T open sets in Tri Topological space, International Journal of Innovative Research in Science and Engineering ,Vol. 3, No. 3, 26.
- [11] Tapi U.D., R. Sharma and B. Deole, β_T open sets in Tri Topological space, accepted for publication in international journal of scientific Research.
- [12] Tapi U.D., R. Sharma and B. Deole , semi open and pre open sets in quad topological space, under communication.

