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Abstract 

The study concerns the estimation of rupture behavior of mild stenosis with a reference 
to mathematical modeling. The increase of growth of Stenosis size leading to the rupture (peak) 
stage which gives the evidence tocompare with calcification inside the aortic valve.The opening 
at this location will be an area as 5mm × 2mm which is predicted slightly higher than the 
regular diameter of the artery at that location. Fluctuating pressures cause instabilities which in 
turn the nature of turbulence at the rupture of stenosis can be detected. In the present study the 
flow under consideration is laminar. The increase in peak systolic blood pressure will be around 
30 mm Hg because of  𝛿 > 0.55𝑚𝑚 with the corresponding systolic velocity as 62.3 cm/sec 
when the growth is at 𝛿 < 0. The effect of different wave forms, stream functions velocity field, 
average volume flow rate, pressure gradient and the wall shear stress have been analysed. The 
velocity gradient at the wall referred to as wall shear rate is larger than the one calculated in 
the arteries of different diameters. The large shear rate in the distal part of the stenosis causes a 
great shearing action on the inner surface of the wall. Series solution method is employed in the 
analysis to quantify the velocity in the axial direction, flow rate and the wall shear stress at the 
varying location of the stenosis near to rupture stage and compared [2], [3],[5],[6].  
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Introduction 
The arterial diseases have major impact on medical diagnosis. The common form of 

arterial narrowing (Stenosis) is caused by the deposition of fats and fibrous tissues in the 
arterial wall. Effect of the stenosis decreases the requirement of blood to the regions beyond 
the narrowing region. Analysis of mild stenosis is being carried out with a view of viscosity 
variation of blood using mathematical modelling. The hematocrit of RBC changes from (I) 42% 
to 45% and(II) 34% to 42 % as, viscosity varies from 3.0 cp to 3.3 cp, Here the case (I) occurs 
when there is an increase of wall shear stress in relation to the increase of shear stress at the 
apex of the branch of the main artery. The radius of mild stenosed artery will be in terms of 
variation of axial coordinates at the initial position of the growing stenosis and the size by 0.5 
mm as another thickness.Mathematical formulation for the mild stenosed artery is considered 
in terms of varying thickness of the stenosis δ . This is due to the increase of viscosity sets the 
increase of arterial blood pressure rate by 5 mm Hg (the initial value). The rupture due to the 
irregular growth of stenosis is studied when the diameter of the size of the stenosis increases. 

Many studies have shown the conclusive remarks both analytically and experimentally. 
Their remarks indicate the study of physiological flow parameters for the growth of stenosis 
such as blood velocity, flow rate and pressure drop across the stenosis. But the profiles of 
velocity and the flow rate, the pressure drop exhibit the blunting effect when the flow is 
studied for mild stenosis in coronary artery with irregular growth of stenosis.  

Back et. al [1] made an experimental study on mild stenosis to estimate the pressure 
drop in the narrowing region. Liepsch et al., [4] discussed velocity measurements in true-to-
scale silicon rubber model of the aortic arch using Laser–Doppler anemometer. Katiyar [6] 
analyzed the pulsatile flow of blood in an elastic tube with wall deformation. David Steinmen et 
al. [7] explained the flow patterns at the stenosed carotid bifurcation on effect of concentric 
versus eccentric stenosis. Basavarajappa et al. [8] studied the experimental and numerical 
analysis of pulsatile flow in carotid artery bifurcations. J.C. Mishra et. al [9] discussed peristaltic 
motion of blood in the microcirculatory system. It is revealed that velocity of blood and wall 
shear stress is appreciably affected due to the non uniform geometry of blood vessels.  

With a view of quantitative study of the viscosity variation of blood, mathematical 
model is proposed to assess the increase of focal point of parabolic flow on the horizontal axis 
when the axisymmetric flow is under analytical consideration. It is assumed that the mild 
stenosis could be represented by a smooth mathematical function as the cosine curve which is 
not the general case. The case of irregular growth of stenosis (δ > 0.55𝑚𝑚) is considered with 
the arterial flow increased by 4 mm Hg at an aortic velocity of 100cm/sec. This causes the 
unsteady nature of flow. The increase of systolic pressure accelerated and ventricular pressure 
becomes lower than aortic one. At the region with stenosed the velocity may be greatly 
increased with a corresponding drop in pressure. Further fluctuations in pressure will appear in 
the diastolic blood pressure. The clinical observation of variation of velocity, flux, pressure 
fluctuations gives the insight to study the rupture case of aneurysm. An attempt has been made 
in the present study to quantify theoretically the peak diastolic pressure fluctuations when the 
peak velocity (up to 200cm/sec) is under consideration. The increase of growth of stenosis size 
leading to the rupture (peak) stage will give the evidence to compare with calcification inside 
the aortic valve (the opening at this location will be an area as 5mm × 2mm which is slightly 
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higher than the regular diameter of the artery at that location). Fluctuating pressures cause 
instabilities which in turn the nature of turbulence at the rupture of stenosis can be detected. In 
the present study the flow under consideration is laminar. The peak systolic blood pressure will 
be around 30 mm Hg because of  δ > 0.55𝑚𝑚 with the corresponding systolic velocity as 62.3 
cm/sec when the growth is at δ < 0.25𝑚𝑚. Thecomputations including the effect of different 
wave forms, stream functions velocity field, average volume flow rate, pressure gradient and 
the wall shear stress. 
Formulation 

Hemodynamic effects referring by a mild stenosis are studied by expressing the radius 
as cosine curve. It consists of the initial radius, the initial thickness of the stenosed region, the 
rupture coefficient and axial distances in the flow directions. The flow direction under 
consideration will be for downstream and upstream of the vessel segment. The blood is 
considered to be viscous and incompressible. 

R z = R0 −
mδv

2
 1 + cos 

π z − zi 

z0
                                                                                                (1) 

Where R0 − initial radius of the stenosed area 
            δv − thickness of the stenosed region 
 z – axial distance 
 z0 – initial axial distance 
 zi  - axial distance at i = 0.2, 0.4, 0.6, 0.8 
The rupture coefficient ‘m’ has been modeled as  

           m =
1

4096

G0D4

ϑ2ρ
                                                                                                                               (2) 

Here G0 −enhanced diastolic pressure,  D − Diameter,    ϑ − kinematic viscosity,   ρ − density 
The flow is considered to be laminar, steady and isothermal. Navier Stokes equations 

have been formulated to compute velocity of radial (r), amplitude (𝜃)   and axial (z) 
components(for conservation of flow) describe the axisymmetric flow for the case of stenosis 
are given by  

r component: ρ  
∂vr

∂t
−

vθ
2

r
 = ρfr −

∂p

∂r
+ μ  ∇2vr −

vr

r2 −
2

r2

∂vθ

∂θ
                                                     (3) 

𝜃 component: ρ  
∂vθ

∂t
+

vr vθ

r
 = ρfθ −

1

r

∂p

∂θ
+ μ  ∇2vθ +

2

r2

∂vr

∂θ
−

vθ

r2
  (4) 

z component: ρ 
∂vz

∂t
= ρfz −

∂p

∂z
+ μ ∇2vz        (5) 

1

r

∂

∂r
 r vr +

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0                  (6) 

Boundary Conditions for the case of right angle constriction with a reference to rupturecase 
between 50% to 86% are 

At r = 0,
∂v

∂r
= 0,  

u = max at r = R = a    (7) 
y = 0, u = 0, y = y0 , u = U                 (8) 
No Slip Condition 
vr = vz = 0 at r = R Z                                                                                                                           (9) 
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Normalization 

xi
∗ =

xi

l0
, vi

∗ =
vi

u0
, t∗ =

tu0

l0
, ρ∗ =

ρ

ρ0

, μ∗ =
μ

μ0

, p∗ =
p

p0
, τ∗ =

τ

τ0
, k∗ =

k

k0
,   

cp
∗ =

cp

cp0

 ,    R∗ =
Rρ0T0

p0
, ϑ∗ =

ϑ

ϑ0
, D∗ =

LD

D0
, fi

∗ =
fi

f0
(10) 

 
where the quantities with the subscripts “0” are initial reference values associated with the 
flow.  

r component: ρ  
∂vr

∗

∂t
−

vθ
∗2

r
 = ρ∗fr

∗ −
∂p∗

∂r
+ μ∗  ∇2vr

∗ −
vr

∗

r2 −
2
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∂vθ
∗

∂θ
                                   (11) 

 

𝜃 component: ρ  
∂vθ

∗

∂t
+

vr
∗vθ

∗

r
 = ρ∗fθ

∗ −
1

r

∂p∗

∂θ
+ μ∗  ∇2vθ

∗ +
2

r2

∂vr
∗

∂θ
−

vθ
∗

r2
                               (12) 

 

z component: ρ 
∂vz

∗

∂t
= ρ∗fz

∗ −
∂p∗

∂z
+ μ∗∇2vz

∗                                                                                (13) 

Introducing three perturbations m1, m2, m3 to describe the rupture behavior of the 
stenosis 

mi =
1

4096

G0D4

ϑ∗2
ρ∗

                                                                                                                                  (14) 

Analysis and Numerical Computation 
The plaque growth is along the artery wall.The wall movement due to increase in the 

velocity of blood gets perturbed and the boundary conditions applied to equations (3), (4), (5) 
and (6) give the velocity in radial and axial directions (vr and vz) only. The elastic properties 
along the length of the stenosis as well as in the unobstructed portion are taken for the case of 
rupture stage such that the minimum diameter (δ = 0.55mm(71%))of stenosis and to the 
maximum diameter (δ = 0.853mm(93.14%)) so that the wave speed rapidly increases before 
rupture and collapses after rupture. This is because, the stenotic region which undergoes to the 
highest stress which in turn influences to cause the high occlusion at the upstream of the 
stenotic region. As a result the larger shear rate effects the fluctuation of the inner surface of 
the wall of the artery. Consequently the velocity gradient at the wall also refer to as wall shear 
rate which will be larger than the one calculated in the rest of the vessel.  

 transmural pressures
∂p

∂r
≈ 0,

∂p

∂θ
≈ 0 and 

∂p

∂z
≈ 0  

To solve for 𝑣𝑟  we assume
∂p

∂r
= 0 (the transmural pressure) at the rupture stage of the 

stenosis.Thus velocity in radial and axial directions are computed as, 
∂2vr

∂r2
+

1

r

∂vr

∂r
−

vr

r2
+
∂2vr

∂z2
= 0                                                                                                    (15) 

We obtain in the similar type  
∂p

∂θ
≈ 0 at the rupture stage  for 𝑣𝜃  
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∂r2
+

1

r
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+

1
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1

r2

∂2vθ

∂z2
−

1

r2
vθ = 0                                                                     16  

∂

∂r
 r

∂vz

∂r
 =

r

μ
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                                                                                                                          (17) 
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We assume that the viscous forces along the axial direction are dominant such that the blood is 
considered as non Newtonian fluid. Then we solve for velocity vr  and vz with 

 transmural pressures 
∂p

∂z
= 0 and 

∂p

∂r
= 0  by neglecting inertia forces. The disturbance in the 

divergent region of the stenosis is caused by a vortex circulation which starts near the wall after 
the systolic peak when the blood elements begin to decelerate.  
For radial direction, 

vr
∗ =  c1b0  

Ar

2
+

A2r3

16
+ − −− − 

+ c2b0   
1

r
−

Ar

4
−

5

64
A2r3 + − −− − +  

Ar

2
+

A2r3

16
+ −− −− log r  

×  c3 cos Tz + c4 sin Tz                                                                          (18) 
For axial direction, 

vz
∗ =

r2

4μ∗

∂p∗

∂z
+ k1logr + k2                                                                                                    (19) 

As the flow of blood is in axial direction, solving for the velocity  

vr = u0  c1b0  
Ar

2
+

A2r3

16
+ − −− − 

+ c2b0   
1

r
−

Ar

4
−

5

64
A2r3 + − −− − +  

Ar

2
+

A2r3

16
+ −− −− log r  

×  c3 cos Tz + c4 sin Tz                                                                                        (20) 

vz = u0  
r2

4μ

∂p

∂z
+ k1logr + k2                                                                                                      (21) 

The flux across the stenosed area  is computed using the equation [ ] for the rupture 
case when transmural pressures are appeared along the length of the stenosis in the 
axisymmetric region. At the prestenotic region the wall shear stress is 20% higher than the one 
in the unstenotic part. At the downstream, the peak of the wall shear stress appears. Due to the 
increase in the diastolic phase ( > 20% as compared at prestenotic region), the inner surface of 
the wall of the artery undergoes to a very high shear stress (approximately 2.7 times the stress 
causing a high wall shear stress about 65 dynes/cm2 ).  The flux across the stenosed area is 
computed as   

Q = 2πu0  c1b0  
Ar3

6
+

A2r5

80
+ − −− − 

+ c2b0   r −
Ar3

12
+ − −− − +

A

2
 
r3 log r

3
−

r3

9
 + −−  

×  c3 cos Tz + c4 sin Tz                                                                                 (22) 
In order to simulate the early phase of the atherogenic process,the analysis on attention has 
been focused on a slight thickening of the artery intimal layer. The intimal alteration is 
restricted to a short region of an arterial segment and induces a very mild stenosis with 2% 
area reduction only. Shear stress evolution in stenosis vessel correlated with the complex 
rheology of the blood explains the decrease of the vessel circular area in time, wall shear stress 
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play an important role in remodeling the arterial wall and can lead to arterial thickening, the 
shear stress at the wall is computed as  

τ =
4μ

πR4(Z)
2πu0  c1b0  

Ar3

6
+

A2r5

80
+ −− − 

+ c2b0   r −
Ar3

12
+ −−− +

A

2
 
r3 log r

3
−

r3

9
 + − −  

×  c3 cos Tz + c4 sin Tz   
Results and Discussion 
 The study of mild stenosis with a reference to rupture case has been analysed. 
Mathematical model to quantify the hemodynamical effects is studied to explain the various 
effects of velocity, flux, wall shear stress, the transmural pressures at the proximal wall. The 
case of rupture of the stenosed region is evident at 
δ = 0.55 to δ = 0.853 mm (71% to 93.14%). It can be noticed from the theoretical analysis 
that the velocity increases as the stenosis size increases due to the arterial thickening and the 
flux also increases on the growth of stenosis as irregular form. Computations for velocity, flux 
and wall shear stress for the case of rupture of mild stenosis indicate that there exists a slight 
thickening of the intimal layer. For the mathematical investigation the intima layer compliance 
is restricted to justify the arterial segment induces the mild stenosis by 2% - 5%  δ ≪ 1.3 . 
Figures (1), (4) indicate the non linear visco-elastic wall motion which is due to the wall 
thickness and elasticity varying on transmural pressures. The flux (Fig 8) shows the flow 
separation close to the wall due to the increase in the wall shear stress at inner surface of the 
arterial wall. Also the velocity curve (Fig 7) shows the intimal thickening cover the region 
approximately 1.00 cm long (along the stenosis) and induces 2% of the area reduction. This 
clearly signifies the occurrence of mild stenosis. The shear stress on the inner surface of the 
arterial wall (Fig 9) indicates the circulatory system of blood in the stenosed region 
downstream and upstream, as a result the disturbed effects due to the rupture at the stenosed 
region describe the saddle shape surface at the systolic phase while in the diastolic phase a 
very high stress peak occurs and wall shear stress increases at the stenosed region upstream 
the section. At the upstream (<20% at the prestenotic region) location the flow is observed as 
laminar and exhibit well-formed parabolic profile. Further near the neck of the stenosis the 
acceleration of the flow leads to a relatively flat profile and causes high velocity and starts 
forming separation zone. Therefore due to the rupture at the stenosed region the shear rate of 
the stenosis causes a great shearing action on the inner surface at the wall. The conclusive 
evidence such as a vortex circulation occur due to the rupture of the mild stenosis, the 
recirculation flow can induce on the wall on high shear stress and decreases at the rupture 
stage and the end stenotic region (in the axial direction), it can be subjected to very different 
shearing action.  
 



                                    Vol.09 Issue-01, (January - June, 2017)       ISSN: 2394-9309 (E) / 0975-7139 (P) 
Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 5.856) 

    Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 

Aryabhatta Journal of Mathematics and Informatics 
                                         http://www.ijmr.net.in email id- irjmss@gmail.com  Page 837 

 
Fig (1) Radius v/s Rupture coefficient   Fig (2) axial distance v/s R(z) for m = 
0.00016953 
 

 
  Fig(3) axial distance v/s R(Z) for m = 0.00085825   Fig (4) R(Z) for m =0.0027125 
 

 
  Fig (5) axial distance v/s R(Z)  for m =0.0066223   Fig (6) axial distance v/s R(Z)  for m 
=0.0137 
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 Fig (7)  radius v/s velocity    Fig (8) radius v/s Flux 
 

 
Fig (9) radius v/s Wall Shear Stress   Fig (10)     radius v/s Pressure 
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NOMENCLATURE 
R(z) – surface distance of stenosis from the axis of the artery 
R0 – initial radius of the stenosed area 
δv  - thickness of stenosis 
z- axial distance 
zi – axial distance at i = 0.2,0.4,0.6,0.8 
Z0 – initial axial distance 
ρ - density 
v – velocity 
p(z) pressure 
μ - coefficient of viscosity 
t – time 
τ- shear stress  
τwss - wall shear stress.  
vr – radial velocity 
 vz – axial velocity 
 Q- flux 
 mi – rupture coefficient 
G0 – pressure due to heat that remains to drive the pipe flow 
ϑ - kinematic viscosity 
D – diameter 
r – radius 
θ - amplitude 
c1,c2, c3 ,c4, b0, A,u0, k1, k2  - constants 

Q =  2πrvrdr  
r

0

 

τ =
4μQ

πR4(Z)
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