
International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

17 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

P COMPLETE PROBLEM WITH CIRCUIT AND MONOTONE CIRCUIT AND NP

COMPLETENESS PEOBLEM WITH SATISFIABILITY AND 3-COLORING

Amit Kumar Nahar
1
, Dr. Om Parkash

2

Department of Computer Science
1,2

OPJS University, Churu (Rajasthan) – India

ABSTRACT

NP Complete (truncated as NPC) problems, remaining at the core of choosing whether P=NP,

are among hardest problems in computer science and other related areas. Through decades,

NPC problems are treated as one class. Seeing that NPC problems have various natures, it is

impossible that they will have a similar complexity. Our escalated investigation demonstrates

that NPC problems are not all equivalent in computational complexity, and they can be

additionally classified. In most of this course, we will look at the asymptotic complexity of

problems. As opposed to considering, express, the time required to solve 3-coloring on graphs

with 10; 000 nodes on some particular model of computation, we will ask what is the best

asymptotic running time of an algorithm that solves 3-coloring on all instances. Surely, we will

be significantly less ambitious, and we will basically ask whether there is a \feasible" asymptotic

algorithm for 3-coloring.

1. INTRODUCTION

As we solve larger and progressively complex problems with more prominent computational

power and cleverer algorithms, the problems we can't handle start to emerge. The theory of NP-

completeness causes us comprehend these limitations and the P versus NP problems starts to

pose a potential threat not similarly as an interesting hypothetical inquiry in computer science,

however as an essential principle that saturates every one of the sciences. So while we don't

expect the P versus NP problem to be resolved sooner rather than later, the inquiry has driven

research in a number of subjects to enable us to get, handle and even exploit the hardness of

different computational problems.

P problems imply that the class of problems can be solved precisely in polynomial time while

NPC problems represent a class of problems which can be solved in nondeterministic

polynomial time by Turing machine. NPC problems have extensive consequences to different

problems in mathematics, science, theory and cryptography. All the more explicitly, in Big O-

notation of computational complexity for asymptotic efficiency of algorithms, P problems can be

solved in polynomial time of O(n k) for some consistent k where n is the size of input to the

problem, while NPC problems may have computational complexity of O(2c
n
) including both

exponential time and sub-exponential time, where c is steady larger than zero.

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

18 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

P
P

 P:The class of problems which can be solved by a deterministic polynomial algorithm.

 NP:The class of decision problem which can be solved by a non-deterministic

polynomial algorithm.

Figure 1: Complete Problem

 NP-hard:The class of problems to which each NP problem reduces

 NP-complete (NPC): the class of problems which are NP-hard and have a place with

NP.

The complexity class P is contained in NP, and NP contains numerous significant problems. The

hardest of which are NP Complete (NPC) problems. A decision problem d is NPC if: d is in NP,

and each NP problem is reducible to d in polynomial time. The most significant open inquiry in

complexity theory is the P versus NP problem which asks whether polynomial time algorithms

actually exist for NPC problems and all NP problems.

2. P-COMPLETE PROBLEMS

To demonstrate that a problem is P-complete we should demonstrate that it is in P and that all

problems in P can be reduced to by means of a log-space reduction. The task of demonstrating

this is simplified by the knowledge that log-space reductions are transitive: if another problem Q

has just been demonstrated to be P-complete, to demonstrate that P will be P-complete it gets the

job done to appear there is a log-space reduction from Q to P and that P ∈ P.

 Circuit Value

Instance: A circuit depiction with fixed qualities for its input variables and a designated output

gate.

Answer: "Yes" if the output of the circuit has esteem 1.

We demonstrate that the CIRCUIT VALUE problem depicted above is P-complete by showing

that for each decision problem in P an instance w of and a DTM M that perceives "Yes"

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

19 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

instances of can be interpreted by a log-space DTM into an instance c of CIRCUIT VALUE with

the end goal that w is a "Yes" instance of if and just if c is a "Yes" instance of CIRCUIT

VALUE.

Since P is shut under supplements, it pursues that if the "Yes" in-positions of a decision problem

can be resolved in polynomial time, so can the "No" instances. Along these lines, the CIRCUIT

VALUE problem is equivalent to deciding the estimation of a circuit from its depiction. Note

that for CIRCUIT VALUE the estimations of all variables of a circuit are incorporated into its

depiction.

CIRCUIT VALUE is in P on the grounds that, as appeared in Theorem, a circuit can be assessed

in a number of steps corresponding at the very least to the square of the length of its depiction. In

this manner, an instance of CIRCUIT VALUE can be assessed in a polynomial number of steps.

Monotone circuits are built of and additionally gates. The functions computed by monotone

circuits’ structure an asymptotically small subset of the set of Boolean functions. Likewise,

numerous significant Boolean functions are not monotone, for example, binary addition. Be that

as it may, despite the fact that monotone circuits are a limited class of circuits, the monotone

version of CIR-CUIT VALUE, characterized underneath, is additionally P-complete.

 Monotone Circuit Value

Instance: A portrayal for a monotone circuit with fixed qualities for its input variables and a

designated output gate.

Answer: "Yes" if the output of the circuit has esteem 1.

CIRCUIT VALUE is a beginning stage to demonstrate that numerous different problems are P-

complete. We start by diminishing it to MONOTONE CIRCUIT VALUE.

Theorem 1MONOTONE CIRCUIT VALUE is P-complete.

Proof As appeared in Problem, each Boolean function can be realized with just AND as well as

gates (this is known as double rail logic) if the estimations of input variables and their

supplements are made accessible. We reduce an instance of CIRCUIT VALUE to an instance of

MONOTONE CIRCUIT VALUE by supplanting each gate with the pair of monotone gates

depicted in Problem 2.12. Such descriptions can be worked out in log-space if the gates in the

monotone circuit are numbered appropriately. The reduction should likewise write out the

estimations of variables of the first circuit and their complements.

The class of P-complete problems is rich. Space limitations expect us to limit our treatment of

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

20 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

this subject to two additional problems. We presently demonstrate that LINEAR

INEQUALITIES depicted underneath is P-complete. LINEAR INEQUALITIES is significant in

light of the fact that it is straightforwardly related to LINEAR PROGRAMMING, which is

broadly used to describe optimization problems. The reader is approached to demonstrate that

LINEAR PROGRAMMING is P-complete.

LINEAR INEQUALITIES

Instance: An integer-valued ×n framework A and segment m-vector b.

Answer: "Yes" if there is a rational column n-vector x > 0 (all segments are non-negative and in

any event one is non-zero) with the end goal thatAx≤b.

We demonstrate that LINEAR INEQUALITIES is P-hard, that will be, that each problem in P

can be reduced to it in log-space. The evidence that LINEAR INEQUALITIES is in P, a

significant and troublesome result in its own right, isn't given here.

Theorem 2 LINEAR INEQUALITIES is P-hard.

Proof We give a log-space reduction of CIRCUIT VALUE to LINEAR INEQUALITIES. That

is, we demonstrate that in log-space an instance of CIRCUIT VALUE can be changed to an in-

position of LINEAR INEQUALITIES so an instance of CIRCUIT VALUE is a "Yes" instance if

and just if the corresponding instance of LINEAR INEQUALITIES is a "Yes" instance.

The log-space reduction that we use converts each gate and input in an instance of a circuit into a

set of inequalities. The inequalities portraying each gate are demonstrated as follows. (A balance

connection a = b is equivalent to two inequality relations, a b and b a.) The reduction likewise

writes the uniformity z = 1 for the output gate z. Since every variable must be non-negative, this

last condition protects that the resulting vector of variables, x, fulfills x > 0.

 Input Gates

Type TRUE FALSE NOT AND OR

Function xi = 1 xi = 0 w = ¬u w = u ∧ v w = u ∨ v

Inequalities xi = 1 xi = 0 0 ≤ w ≤ 1

w = 1 − u

0 ≤ w ≤ 1 w ≤ u w ≤ v

u + v − 1 ≤ w

0 ≤ w ≤ 1

u ≤ w v ≤ w

w ≤ u + v

Given an instance of CIRCUIT VALUE, every task to a variable is converted into a uniformity

articulation of the structure xi = 0 or xi = 1. Correspondingly, each AND, OR, and NOT gate is

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

21 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

converted into a set of inequalities of the structure appeared. Logarithmic transitory space does

the trick to hold gate numbers and to write these inequalities in light of the fact that the number

of bits needed to speak to each gate number is logarithmic in the length of an instance of

CIRCUIT VALUE.

To see that an instance of CIRCUIT VALUE is a "Yes" instance if and just if the instance of

LINEAR INEQUALITIES is likewise a "Yes" instance, see that inputs of 0 or 1 to a gate result

in the correct output if and just if the corresponding set of inequalities powers the output variable

to have a similar worth. By induction on the size of the circuit instance, the qualities computed

by each gate are actually equivalent to the estimations of the corresponding output variables in

the set of inequalities.

We give as our last case of a P-complete problem DTM ACCEPTANCE, the problem of

choosing if a string is acknowledged by a deterministic Turing machine in a number of steps

indicated as unary number. (The integer k is spoken to as unary number by a string of k

characters.) For this problem it is increasingly helpful to give an immediate reduction from all

problems in P to DTM ACCEPTANCE.

DTM ACCEPTANCE

Instance: A description of a DTM M, a string w, and an integer n written in unary. Answer:

"Yes" if and just if M, when begun with input w, halts with the answer "Yes" in at most n steps.

Theorem 3 DTM ACCEPTANCE is P-complete.

Proof To demonstrate that DTM ACCEPTANCE is log-space complete for P, consider an arbitrary problem

P in P and an arbitrary instance of P, in particular x. There is some Turing machine, say MP,that

acknowledges instances x of P of length n in time p (n), p a polynomial. We assume that p is

incorporated with the specification of MP. For example, if p(y) = 2y
4
 + 3y

2
 + 1, we can speak to it

with the string ((2, 4), (3, 2), (1, 0)). The log-space Turing machine that makes an interpretation

of MP and x into an instance of DTM ACCEPTANCE writes the description of MP together with

the input x and the estimation of p(n) in unary. Steady temporary space gets the job done to

move the descriptions of MP and x to the output tape. To complete the verification we need just

demonstrate that O (log n) temporary space does the trick to write the incentive in p (n) in unary,

where n is the length of x.

Since the length of the input x is given in unary, that is, by the number of characters it contains,

its length n can be written in binary on a work tape in space O(log n) by including the number of

characters in x. Since it isn't hard to demonstrate that any intensity of a k-bit binary number can

be computed by a DTM in work space O(k), it pursues that any fixed polynomial in n can be

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

22 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

computed by a DTM in work space O(k) = O(log n).

To demonstrate that DTM ACCEPTANCE is in P, we design a Turing machine that

acknowledges the "Yes" instances in polynomial time. This machine copies the unary string of

length n to one of its work tapes. Given the description of the DTM M, it simulates M with an all

inclusive Turing machine on input w. When it completes a step, it progresses the head on the

work tape containing n in unary, pronouncing the instance of DTM ACCEPTANCE

acknowledged whether M ends without utilizing more than n steps. By definition, it will

complete its simulation of M in at most n of M’s steps every one of which uses a steady number

of steps on the recreating machine. That is, it acknowledges a "Yes" instance of DTM

ACCEPTANCE in time polynomial in the length of the input.

We signify by P the class of decision problems that are solvable in polynomial time. We state

that a search problem characterized by a connection R is a NP search problem if the connection

is productively computable and with the end goal that solutions, on the off chance that they exist,

are short. Officially, R is a NP search problem if there is a polynomial time algorithm that, given

x and y, chooses whether (x; y) 2 R, and if there is a polynomial p with the end goal that in the

event that (x; y) 2 R at that point jyj · p(jxj).

We state that a decision problem L is a NP decision problem if there is some NP connection R

with the end goal that x 2 L if and just if there is a y to such an extent that (x; y) 2 R.

Equivalently, a decision problem L is a NP decision problem if there is a polynomial time

algorithm V (¢; ¢) also, a polynomial p with the end goal that x 2 L if and just if there is a y, jyj

· p(jxj) such that V (x; y) accepts.

We signify by NP the class of NP decision problems.

Equivalently, NP can be characterized as the set of decision problems that are solvable in

polynomial time by a non-deterministic Turing machine. Assume that L is solvable in

polynomial time by a non-deterministic Turing machine M: at that point we can define the

connection R with the end goal that (x; t) 2 R if and just if t is a transcript of a tolerant

computation of M on input x and it's anything but difficult to demonstrate that R is a NP

connection and that L is in NP as indicated by our first definition. Assume that L is in NP as per

our first definition and that R is the corresponding NP connection. At that point, on input x, a

non-deterministic Turing machine can figure a string y of length not exactly p(jxj) and afterward

acknowledge whether and just if (x; y)2 R. Such a machine can be executed to run in non-

deterministic polynomial time and it chooses L.

For a function t: N! N, we characterize by DTIME(t(n)) the set of decision problems that are

solvable by a deterministic Turing machine inside time t(n) on inputs of length n, and by

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

23 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

NTIME(t(n)) the set of decision problems that are solvable by a non-deterministic Turing

machine inside time t(n) on inputs of length n. In this way, P =
S
kDTIME(O(n

k
)) and NP =

S
kDTIME(O(n

k
)).

3. NP-COMPLETENESS

 Reductions -Let A and B be two decision problems. We state that A reduces to B, indicated

A • B, if there is a polynomial time computable function f with the end goal that x 2 An if

and just if f(x)inB Two immediate observations: in the event that A • B and B is in P, at that

point additionally A 2 P (on the other hand, on the off chance that A • B, and A 62P then

likewise B 62P); in the event that A • B and B • C, at that point additionally A • C.

 NP-completeness -A decision problem A is NP-hard if for each problem L 2 NP we have L •

A. A decision problem A is NP-complete in the event that it is NP-hard and it has a place

with NP. It is a simple observation that in the event that A is NP-complete, at that point An is

solvable in polynomial time if and just if P = NP.

 NP-COMPLETE PROBLEM

Think about the accompanying decision problem, that we call U: we are given in input (M; x; t;

l) where M is a Turing machine, x 2 f0; 1g
¤
 is a conceivable input, and t and l are integers

encoded in unary
2
, and the problem is to decide if there is a y 2 f0; 1g

¤
, jyj · l, such that M(x; y)

accepts in · t steps.

It is immediate to see that U is in NP. One can characterize a technique VU that on input (M; x;

t; l) and y acknowledges whether and as it were if jyj · l, and M(x; y) accepts in at most t steps.

Let L be an NP decision problem. Then there are algorithm VL, and polynomials TL and pL, such

that x
2
 L if and only if there is y, jyj ·pL(jxj) such that VL(x; y) accepts; furthermore VL runs in

time at most TL(jxj + jyj). We give a reduction from L to U. The reduction maps x into the

instance f(x) = (VL; x; TL(jxj + pL(jxj)); pL(jxj)). Just by applying the definitions, we can see

that x
2
 L if and only f(x) 2 U.

As referenced over, the NP-complete problems are the problems in NP that are the most hard to

solve. We have demonstrated that NP ⊆ PSPACE ⊆ EXPTIME or that each problem in NP,

including the NP-complete problems, can be solved in exponential time. Since the NP-complete

problems are the most difficult problems in NP, each of these is even under the least favorable

conditions an exponential-time problem. Consequently, we realize that the NP-complete

problems require either polynomial or exponential time, yet we don't know which.

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

24 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

The CIRCUIT SAT problem is to decide from a description of a circuit whether it tends to be

fulfilled; that is, regardless of whether esteems can be doled out to its inputs with the end goal

that the circuit output has esteem 1. As referenced over, this is our canonical NP-complete

problem.

CIRCUIT SAT

Instance: A circuit description with n input variables {x1,x2. . .xn}for some integer n and a

designated output gate.

Answer: "Yes" if there is a task of qualities to the variables with the end goal that the output of

the circuit has esteem 1.

CIRCUIT SAT is a NP-complete problem. The goal of this problem is to perceive the "Yes"

instances of CIRCUIT SAT, instances for which there are esteems for the input variables with

the end goal that the circuit has esteem 1.

We demonstrated that CIRCUIT SAT depicted above is NP-complete by evil spirit starting that

for each decision problem P in NP an instance w of P and a NDTM M that acknowledges "Yes"

instances of P can be deciphered by a polynomial-time (actually, a log-space) DTM into an

instance c of CIRCUIT SAT with the end goal that w is a "Yes" instance of P if and just if c is a

"Yes" instance of CIRCUIT SAT.

Despite the fact that it gets the job done to reduce problems in NP by means of a polynomial-

time transformation to a NP-complete problem, every one of the reductions given in this part

should be possible by a log-space transformation. We currently demonstrate that an assortment

of different problems is NP-complete.

4. NP-COMPLETE SATISFIABILITY PROBLEMS

We demonstrated that SATISFIABILITY characterized beneath is NP-complete. In this section

we exhibit that two variations of this language are NP-complete by simple augmentations of the

fundamental verification that CIRCUIT SAT is NP-complete.

SATISFIABILITY

Instance: A set ofliteralsX = {x1,x1,x2,x2. . .xn,xn}and a sequence ofclauses

= (c1, c2. . . cm), where each clause ci is a subset of X.

Answer: “Yes” if there is a (satisfying) assignment of values for the variables{x1,x2. . .xn} over

the set B with the end goal that every provision has at any rate one exacting whose worth is 1.

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

25 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

The two variations of SATISFIABILITY are 3-SAT, which has all things considered three

literals in every provision, and NAESAT, in which not all literals in every proviso have a similar

worth.

3-SAT

Instance: A set of literalsX= {x1,x1,x2,x2,. . .,xn,xn}, and a sequence of clauses C = (c1, c2, . . . ,

cm), where each clause ci is a subset of X containing all things considered three literals.

Answer: "Yes" if there is an assignment of values for variables{x1,x2. . .xnis a subset of X

containing everything thought about three literals.

Answer: "Yes" if there is an assignment of values for variables 1.

Theorem 43-SATisNP-complete.

Proof The verification that SATISFIABILITY is NP-complete likewise applies to 3-SAT on the

grounds that every one of the clauses produced in the transformation of instances of CIRCUIT

SAT has all things considered three literals for each condition.

NAESAT

Instance: An instance of 3-SAT.

Answer: “Truly" if every proviso is satisfiable when not all literals have a similar value.

NAESAT contains as its "Yes" instances those instances of 3-SAT in which the literals in every

statement are not all approach.

Theorem 5NAESATisNP-complete.

Proof We reduce CIRCUIT SAT to NAESAT utilizing nearly a similar reduction concerning 3-

SAT. Each gate is replaced by a set of clauses. The main contrast is that we add the new strict y

to every two-exacting provision related with AND or potentially gates and to the condition

related with the output gate. Unmistakably, this reduction can be performed in deterministic log-

space. Since a "Yes" instance of NAESAT can be confirmed in nondeterministic polynomial

time, NAESAT is in NP. We currently demonstrate that it is NP-hard.

Given a "Yes" instance of CIRCUIT SAT, we demonstrate that the instance of 3-SAT is a "Yes"

instance. Since each condition is fulfilled in a "Yes" instance of CIRCUIT SAT, each provision

of the corresponding instance of NAESAT has in any event one exacting with value 1. The

clauses that don't contain the strict y by their temperament have not all literals equivalent. Those

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

26 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

containing y can be made to fulfill this condition by setting y to 0, along these lines giving a

"Yes" instance of NAESAT.

Presently consider a "Yes" instance of NAESAT produced by the mapping from CIRCUIT SAT.

Supplanting each strict by its supplement generates another "Yes" instance of NAESAT since

the literals in every proviso are not all rise to, a property that applies when complementation. In

one of these "Yes" instances y is doled out the value 0. Since this is a "Yes" instance of

NAESAT, at any rate one strict in every condition has value 1; that is, every provision is

satisfiable. This infers the first CIRCUIT SAT problem is satisfiable. It pursues that an instance

of CIRCUIT SAT has been converted into an instance of NAESAT with the goal that the

previous is a "Yes" instance if and just if the last is a "Yes" instance.

Figure 2:A reduction from CIRCUIT SAT to NAESAT

Reduction from CIRCUIT SAT to NAESAT is gotten by supplanting each gate in a "Yes"

instance of CIRCUIT SAT by a set of clauses. The clauses utilized in the reduction from

CIRCUIT SAT to 3-SAT are those appeared with the strict y evacuated. In the reduction to

NAESAT the exacting y is added to the 2-strict clauses utilized for AND as well as gates and to

the output condition.

THEOREM 63-COLORINGisNP-complete.

Proof To demonstrate that 3-COLORING is in NP, see that a three-coloring of a graph can be

proposed in nondeterministic polynomial time and confirmed in deterministic polynomial time.

We reduce NAESAT to 3-COLORING. Review that an instance of NAESAT is an instance of 3-

SAT. A "Yes" instance of NAESAT is one for which every statement is satisfiable with not all

literals equivalent. Let an instance of NAESAT comprise of m clausesC = (c1, c2. . . cm)

containing exactly three literals from the set X = {x1, x1, x2, x2, . . . , xn, xn} of literals in n

variables. (Utilize the method presented in the proof of Theorem 6 to guarantee that every

proviso in an instance of 3-SAT has precisely three literals for each statement)

Given an instance of NAESAT, we build a graph G in log-space and demonstrate that this graph

is three-colorable if and just if the instance of NAESAT is a "Yes" instance.

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

27 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

The graph G has a set of n variable triangles, one for every variable. The vertices of the triangle

related with variable xi are {ν, xi, xi}. Accordingly, all the variable triangles share one vertex for

all intents and purpose. For every condition containing three literals we build one statement

triangle for each proviso. On the off chance that provision cj contains literals λj1 ,λj2 , and λj3 , its

associated clause triangle has vertices labeled (j, λj1), (j, λj2), and (j, λj3). Finally, we add an

edge between the vertex (j, λjk) and the vertex associated with the literal λjk .We currently

demonstrate that an instance of NAESAT is a "Yes" instance if and just if the graph G is three-

colorable. Assume the graph is three-colorable and the colors are {0, 1, 2}. Since three colors are

needed to color the vertices of a triangle and the variable triangles share a vertex labeled ν for all

intents and purpose, assume without loss of generality that this basic vertex has color 2. The

other two vertices in every variable triangle are doled out value 0 or 1, values we provide for the

related variable and its supplement.

Figure 3:Gcorresponding to the clausesc1={x1,x2,x3}andc2={x1,x2,x3}in an instance of

NAESAT.

It has one variable triangle for each variable and one clause triangle for each clause.

Consider now the coloring of provision triangles. Since three colors are needed to color vertices

of a condition triangle, think about vertices with colors 0 and 1. The edges between these

provision vertices and the corresponding vertices in variable triangles have various colors at

each end. Give the literals access the condition triangles be given values that are the Boolean

supplement of their colors. This gives values to literals that are predictable with the values of

variables and guarantees that not all literals in a proviso have a similar value. The third vertex in

every triangle has color 2. Give its literal a value steady with the value of its variable. It pursues

that the clauses are a "Yes" instance of NAESAT.

Assume, then again, that a set of clauses is a "Yes" instance of NAESAT. We demonstrate that

the graph G is three-colorable. Allocate color 2 to vertex ν and colors 0 and 1 to vertices

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

28 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

labeledxi and xi in view of the values of these literals in the "Yes" instance. Think about two

literals in proviso cj that are not both satisfied. If xi (xi) is one of these, give the vertex labeled (j,

xi) ((j, xi)) the value that is the Boolean complement of the color of xi (xi) in its variable triangle.

Do likewise for the other literal. Since the third literal has a similar value as one of the other two

literals (they have various values), let its vertex have color 2. At that point G is three-colorable.

Along these lines, G is a "Yes" instance of 3-COLORING if and just if the corresponding set of

clauses is a "Yes" instance of NAESAT.

Instance: A setS={u1,u2. . .up}and a family{S1,S2,. . .,Sn}of subsets ofS.

Answer: “Yes” if there are disjoint subsetsSj1,Sj2,. . .,Sjtsuch that∪1≤i≤tSji=S.

5. CONCLUSION

In this section we discuss the complexity class NP that aims to capture the set of problems whose

solutions can be efficiently verified. The famous P versus NP question asks whether or not the

two are the same. We also introduce NP-completeness, an important class of computational

problems that are in P if and only if P = NP

The class NP consists of all the languages for which membership can be certified to a

polynomial-time algorithm. It contains many important problems not known to be in P. NP can

also be defined using non-deterministic Turing machines. NP-complete problems are the hardest

problems in NP, in the sense that they have a polynomial-time algorithm if and only if P =NP.

Many natural problems that seemingly have nothing to do with Turing machines turn out to be

NP-complete. One such example is the language 3SAT of satisfiable Boolean formulae in 3CNF

form. If P = NP then for every search problem for which one can efficiently verify a given

solution, one can also efficiently find such a solution from scratch.

REFERENCES

[1]. WenhongTian (2018) – “On The Classification Of NP Complete Problems And Their

Duality Feature”, International Journal of Computer Science & Information Technology

(IJCSIT) Vol 10, No 1, February 2018

[2]. Tian, Wenhong. (2017). On the Transformability of P and NP Problems.

[3]. F. L. Traversa, C. Ramella, F. Bonani and M.D. Ventra, memcomputing NP-complete

problems in polynomial time using polynomial resources and collective states, Science,

Vol. 1, no. 6, e1500031, Nov. 2015.

[4]. Shivam Sharma (2015) – “P VS NP PROBLEM”, (IJCSIT) International Journal of

Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5022-5025

[5]. Lance Fortnow, (2015) - The Status of the P versus NP problem, Communications of the

ACM. 52 (9): 78–86, 2009.

International Journal in IT & Engineering (IJITE)
Volume 6 Issue 8, August 2018 ISSN: 2321-1776 Impact Factor: 6.341
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com Double-
Blind Peer Reviewed Refereed Open Access International Journal

29 International Journal in IT and Engineering
http://ijmr.net.in, Email: irjmss@gmail.com

[6]. V. Conitzer and T. Sandholm. New complexity results about Nash equilibria. Games and

Economic Behavior, 63(2):621{641, July 2008.

[7]. Aaronson. NP-complete problems and physical reality. SIGACTN: SIGACT News

(ACM Special Interest Group on Automata and Computability Theory), 36, 2005.

[8]. O’Donnell. Hardness amplification within NP. JCSS: Journal of Computer and System

Sciences, 69, 2004.

[9]. G. J. Woeginger, Exact algorithms for NP-hard Problems: A Survey, Combinatorial

optimization - Eureka, you shrink! Pages 185 - 207 , Springer-Verlag New York, Inc.

New York, NY, USA ©2003

[10]. PierluigiCrescenzi and ViggoKann. A compendium of np optimization problems. http:

//www.nada.kth.se/~viggo/problemlist/, 2000. Website tracking the tractability of many

NP problems.

