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ABSTRACT  

If the datasets contain large number of variables, OLS assumption of independence of the 

variables may get violated. Some of the variables may depend on each other. This problem is 

called as problem of multicollinearity. In case if multicollinearity, we cannot calculate the 

coefficients of regression using the method of ordinary least square as matrix (W‟W)-1 is found 

to be singular with correlated predicted variables, hence unbiased estimates do not exists.  The 

regression estimates calculated in this case have very large values than expected which may lead 

to incorrect results. Incorrect values of correlation coefficients will produce large values of 

predictions resulting in the large residual errors. In such cases regularized regression methods are 

used to deal with multicollinearity and help to manage regression coefficients in order to reduce 

variance and sample error.  Regularization is useful when high multi-collinearity is present 

among repressors, in case of no. of variables are large than the numbers of observations are less 

than number of variables. In presence of multicollinearity, high variability in coefficients terms 

is observed and the coefficients of the correlated variables become over-inflated. So it is 

expected to identify and remove strongly correlated variables using some tools.  

KEYWORDS:Regularization, Non-Parametric Regressions, Regression Models, OLS 

assumption 

INTRODUCTION 

When the observation numbers are less than the no. of variables (n<p) then the inverse of the 

matrix (W'W) does not exists. That means, there is no unique solution set for least square 
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estimates. This is called as problem of insufficient solutions. In this case, some variables should 

be removed until we get p<n to fit regression model using OLS method.  

In case of large number of variables, we wish to identify smaller subset of variables which 

exhibits the strongest relation to be included in the model.  

In such cases we regularized regression is used to control the estimates of parameter.  

Regularization is a regression model with constraint on the magnitude of regression coefficients. 

Constraint added in the model will help to reduce magnitude and fluctuations of the regression 

coefficients and decrease variance of model. Regularization method solves multi-collinarity 

problem by introducing to objective function a penalty term that controls complexity of model.  

Regularization is done to shrink the coefficients towards zero to avoid the risk of over fitting.  

The objective function with penalty parameter (P) is given by  

                                         Minimize [SSE + P]  

Following are some models used when collinearity is observed amongst the variables.  

RIDGE REGRESSION  

Mathematically speaking, estimates of regression coefficients using the ordinary least squares  

(OLS) method are given by the formula,           

  = ( W'W )-1 W' Y  

Here W is data matrix of predictor variables and Y is vector of response variable. When the 

predictors are highly correlated, the matrix (W'W)-1 is near singular hence unbiased estimates 

does not exists. Ridge regression introduces a ridge parameter Δ and modifies the OLS estimator 

to                  ˄                      

  = (W'W +Δ I)-1 W' Y  
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The value of the ridge parameter is very small just enough to remove the singularity of the 

matrix. If this value is large then the effects of other variables will get inflated. It is obvious that 

new regression coefficient estimates are no more remained unbiased.   

Ridge model retains all variables yet reduce the noise by less influential variables and minimize 

multicollinearity.  

Mathematical form of Ridge Regression-  

In case of multicollinearity, the huge value and the variability is observed in the regression 

coefficients, which needs to be stabilized to control the error in the prediction. So the objective is 

to minimize the errors and the values of estimated regression coefficients. Some of the regression 

coefficients are positive or some may be negative, they may cancel the effects of each other 

while adding up the coefficients. That‟s why the squares of the values of the coefficients are 

taken. Ridge regression uses λΣγj2 as a penalty parameter. This parameter is referred as L2 

regularization norm. L2 signifies second-order penalty on the coefficients. The objective 

function becomes,  

                                   Minimize [SSE + λΣγj2]  

With λ = 0, the objective function is same as normal OLS regression objective function. As value 

of λ increases, the penalty becomes large and forcing coefficients to zero. Σγj2 < c for some 

positive constant c the last condition is called regularization condition and its effect is restricting 

regression coefficients within hypersphare with radius c. It is called L2 regularization norm.  

The ridge Regression is given by  

                                      y = γ0+ γ1 w1 +γ2 w2+…..+ γpwp + ɛ    

Subject to the constraint Σγi2 < c   for c >0  
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Alternative way to treat multi co-linearity  

In this case of multi co-linearity, we propose to use the recursive partitioning method same as 

used in decision trees. In this procedure most dominating variable is chosen as partitioning 

variable, and the data set is partitioned into two mutually exclusive sub groups and the procedure 

is repeated on these sub groups to finally get homogeneous, mutually exclusive partitioned sets. 

As we divide the data set according to the most dominating variable, its influence on other 

variables may get reduce and the new sub sets may not be having multi co-linearity property. For 

such data sets we can use our usual regression model.  

So it is proposed that while processing decision tree algorithm, we use the stopping rule that at 

every node we calculate (W'W), if it is singular then we stop the procedure otherwise we 

continue partitioning.  

Important points of Ridge regression. 

1. Ridge regression makes the same assumptions that linear regression makes except for the 

assumption of normality.  

2. Ridge regression shrinks the values of regression Coefficient but does not reduce them to 

zero. As a result Ridge regression does not lead to variable selection that can avoid 

multicollinearity.  

3. Reason regression is called a regularization method and it uses L2 regularization because 

it controls the L2 norm of the regression coefficients   

4. Depending on the form of Ridge regression model a parameter Δ or C is known as 

shrinkage parameter it is also called the bias in parameter due to the fact that it causes the 

estimates of regression Coefficient to be biased.  

LASSO REGRESSION  

Lasso regression uses the absolute values of regression coefficients instead of squares of 

regression coefficients as regularization. Lasso Regression is similar to ridge regression except 
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for the fact that lasso regression results in selection of variables as a result of regularization.  The 

name Lasso is the short form (that is„acronym‟) of the descriptive name “Least Absolute  

Shrinkage and Selection Operator”. It is obtained by subjecting the regression coefficients to the 

linear constraint.                  

                                      Minimize [SSE + λ Σ| γj |]  

The constraint is also called as L1 penalty (L1 norm). With this penalty, lasso does variable 

selection and shrinkage that is; it shrinks the coefficients and set others to zero. This overcomes 

the limitation of Ridge regression. As a result of using L1 norm, Lasso regression reduces some 

regression coefficients to zero, leading to the removal of the corresponding variables from the 

model. Predictor variables that have non-zero coefficients in Lasso regression are the variables 

that are selected for inclusion in the model. It can be noticed that, larger the penalty applied, 

closer the parameter estimates get to zero. The model of Lasso Regression is given by  

                                       y = γ0+ γ1 w1 +γ2 w2+…..+ γpwp + ɛ     

 Subject to the constraint   Σ ׀γi׀< C for some C > 0  

Important points in the context of lasso regression. 

1. Lasso regression has some assumptions as linear regression except for the assumption of 

normality.  

2. Lasso regression shrinks some of the regression coefficients to zero thus affecting 

selection of predictor variables for inclusion in the model.  

3. Lasso regression is a regularization method that uses the L1 norm for regularization fore 

if there is a group of highly correlated predictor variables Lhasa regression retains only 

one of these variables in the model and shrinks coefficient of others to zero.  
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ELASTIC NET REGRESSION  

Elastic Net Regression combines the regularization conditions (or the constraints imposed) of 

both methods viz. ridge regression and lasso regression. More precisely Elastic Net minimizes 

total squared error subject to the following two constraints   

Constraint 1 - for Σ ׀γi׀< C   for some constant C> 0  

Constraint 2 - for Σ γi2< D   for some constant D> 0  

The objective function can be written as  

                           Minimize [SSE + λ 1Σγj2+ λ2 Σ| γj |]  

Elastic net regression is supposed to inherit benefits if both ridge regression and lasso regression, 

while avoiding disadvantages or limitations of anyone of the two. Elastic net regression appears 

to be more of a theoretical interest than of much practical use. The only mentionable application 

of elastic net regression in the literature is in Support Vector Machines.  

QUANTILE REGRESSION  

Quantile regression is linear regression‟s extension used in presence of the outliers, high degree 

of skewness and heteroscedasticity the objective of quantile regression is to predict the specified 

quantile of the response variable instead of predicting its arithmetic mean. In particular, median 

regression is a specific form of quantile regression model. It is very useful in describing the 

distribution of target variable when it is known to be non-normal and hence cannot be described 

by only mean and variance. Quantile regression can be useful in estimating the average income 

of low income group since it is known that income distribution is not normal.  

While fitting quantile regression, first, values of regressor variable (W) and that of output (Y) are 

ordered. Percentiles of W and Y are calculated denoted by w(i) and y(i)  are calculated.  

Regression equation is then fitted to these percentile values.   
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In this method, regression equation is fitted to (w (i), y (i) ) and for this we have to break the 

original pair of w and y.  

PRINCIPAL COMPONENT REGRESSION (PCR)  

PCR is used in presence of multicollinearity or large the number of predictor variables. It is 

expected to derive low-dimensional data that contains maximum possible information. In case, 

where no. of variables p is exceeds no. of observations (p > n), n observations are contained in p 

dimensional space (p principal components) and PCR is linear combination of these p 

components. Thus one can say that PCA reduces the dimensionality while explaining the most of 

the variability.  

A set of new variables are obtained from original variables such that the new variables (called 

principal components) are uncorrelated.   

i Since principle components are independent of one another, PCR has no problem of 

multicollinearity.  

ii Also, since principal components decrease dimensionality of data set, PCR also achieves 

reduction in dimensionality of data.  

The first principal component (PC) has maximum variance. Second PC is calculated such a way 

that it is not correlated to first PC and has second largest variance. In same way p number of PCs 

is derived from p number of variables.  

Construction of principle components-  

Let Correlation Matrix is R  

Largest Eigen value is λ1  

Corresponding Eigen vector is η1 =( η11 + η12 +٠٠٠٠ + η1p)  

Then PC1 = η11 W1+ η12 W2+٠٠٠٠ + η1p Wp 
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And Regression of Y on PC1is   

Y = γ0 + γ1 PC1  

Let R1 = R – λ1 η1 η1'  

Largest Eigen value of R1 is the second largest value of R λ2 say.  

Corresponding Eigen vector is η2  

Then PC2 = η21 W1+ η22 W2+٠٠٠٠ + η2pWp  

Regression of Y on PC1 and PC2 is  

Y = γ0 + γ1PC1 + γ2 PC2  

Computing in the same way, we get  

For Eigen value λp and Eigen vector ηp 

PCp = ηp1 W1 + ηp2 W2 +٠٠٠٠ + ηppWp 

Regression of Y on PC1, PC2, …PCp is  

Y = γ0 + γ1 PC1+ γ2 PC2+٠٠٠٠ + γpPCp 

Since all the principal components are independent, we can fit the regression line using usual 

OLS method.   

Illustrative example of Principal Component Regression  

For illustration, the dataset „Boston‟ is taken from the library „MASS‟ of R software. The 

structure or data frame of the Boston dataset is described below.  

 The response variable is „medv‟  
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There are 506 observations on 14 variables:  

1. „crim‟   : crime rate per capita : numeric  0.02731, 0.02729, 0.03237, 0.06905...  

2. „indus‟: non-retail business proportion : numeric 2.31, 7.07, 7.0,7, ...  

3. „zn‟     : residual land proportion : numeric 18, 0, 0, 12.5, 12.5, 12.5, 12.5...  

4. „chas‟   : dummy variable : integer 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ...  

5. „age‟    : owner occupied unit proportion : numeric 65.2, 78.9, 61.1,...  

6. „nox‟    : concentration of nitric oxide : numeric 0.538, 0.469, 0.469, 0.458..  

7. „rm‟     : room number average : numeric 6.58, 6.42, 7.18, 7, 7.15...  

8. „dis‟    : distance weighted : numeric 4.09, 4.97, 4.97, 6.06, 6.06...  

9. „rad‟    : accessibility index : integer 1, 2, 2, 3, 3, 3, 5, 5, 5, 5...  

10. „tax‟    : property tax rate : numeric 296, 242, 242, 222, 222,...  

11. „ptratio‟: per town pupil-teacher ratio :numeric 15.3, 17.8, 17.8,...  

12. „black‟: proportion of blacks : numeric 397, 397, 393, 395, 397...  

13. „lstat‟: lower status percentage: numeric 4.98, 9.14, 4.03, 2.94, 5.33...  

14. „medv‟   : owner occupied homes median : numeric 24, 21.6, 34.7, 33.4, …  

We will check for the NA and missing observations. Note that the dataset does not contain any 

missing or NA observations or missing observations, so it can be taken directly for the analysis.  

The variables are scaled using the „centre‟ and „scale‟ values and then principal components are 

computed. The outputs of PC analysis calculations are listed as,  

$names  

[1] "sdev"     "rotation" "center"   "scale"    "w"         

$class  

[1] "prcomp"  

$sdev 
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 [1] 2.4470390   1.2318221   1.0661141   0.9007497   0.8023388   0.7230142 0.6335543  

 [8] 0.5055041   0.4627149   0.4368680   0.4269747   0.3687497  

LINEAR DISCRIMINANT ANALYSIS (LDA)  

Also known as Fisher Discriminant Analysis (FDA). It is classification and dimensionality 

reduction technique. These techniques are highly used in machine learning since high 

dimensional data sets exist in these days. Linear discriminant analysis is a generalization of 

Fisher‟s discriminant analysis.  

LDA assumes that the predictor variables are normally distributed (Gaussian distribution) and 

classes have specific means and equal variances/covariance. LDA uses the concept of ratio 

maximization of between class variance and within class variance to get maximum severability. 

In other classification techniques, the classes are predetermined and the probability of the 

observations to get included in that class is calculated. In case of linear discriminant analysis, 

classes are not predetermined. In the analysis the class boundaries are calculated using the 

principle of maximizing the ratio of between class variances to the within class variances. And 

the classification is done using that principle for future.  

For simplicity, let‟s considers there be two classes in the data whose boundaries are to be 

determined. Consider there be two classes with means  and  with constant variances  =  

= .   

TSS. = =  

                = ΣΣ  + ΣΣ  …………………… (Using assumptions)  

                = within S.S. + between S.S.                                            

To have both the classes separable, error sum of square within the classes should be minimum 

and the error sum of squares between the classes should be maximum so as to get distinguish 

classes. Thus the criterion for better classification will be either   
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(i) Maximizing  or (ii) minimizing  

In second case, if both the classes are very much near and not clearly separable the criterion is 

not possible as between S.S. is nearly equal to zero. So the classification criteria is to maximize 

the proportion of between error total of squares to within total squares of errors.   

Principle of classification can be generalized for more than two classes.   

We can write the classification rule as follows.  

Let distance of W from first population mean is small than second population  

 

 

 

Let  

If  is assign to population j. 

 

Define  , i= 1, 2, …, p  
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Rearrange the variables in the vector W so that the following condition is satisfied.  

 

Note that can be decomposed as follows. 

 

Where   

,                

Σ =   and  

.  

, so that  

Repeating the same step, we obtain  

 

Where  

And  is defined in the same way as  above with p-1 written in the place of p. 

The discriminant analysis is useful only when . It can be shown that  

 

if and only if  .  

 
      
 = (   

    -      ) ‟        
  (      

 -      ) 

[ 
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When  for all j=1, 2,….,p.  

 

Rearranging the components of W so that  implies that if some of the 

components of  and  are equal, these components will be last in the rearranged vector . In  

 

other words, if a positive integer k can be found between 1 and p-1 so that  , where   

 

 Then, it is easy to show that   

  ) = 0, where  

 

and  

 If  =  then it is easy to find the last p-k components of the random vector  do not 

contribute to the discriminant function. This is same as the statement that the first k components 

 of the random vector are sufficient for constructing the discriminant function. 

Consequently, only these k variables will be selected for discriminant analysis. This is how 

feature selection works in the linear discriminant analysis.  
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CONCLUSI1ON 

The research reported in the present thesis aims at unifying and generalizing the linear regression 

model as the most general predictive statistical model. As the result of the research carried out 

for the present thesis leads to some conclusions. Some recommendations can be made for future 

research on this topic on the basis of these conclusions. Some of the most important 

recommendations are listed below for the benefit of the readers and future researchers who wish 

to work on predictive statistical modelling. The study is regarding the choice of the mathematical 

model. The choice of the mathematical model obviously depends on the nature of the 

relationship between the independent variable(s) and the dependent variable. Therefore, the 

choice of the mathematical model can be made only after carrying out some graphical and 

numerical analysis in order to understand the nature of the relationship between the independent 

variable(s) and the dependent variable. The graphical analysis includes drawing scatter plots of 

the dependent or response variable against each and every predictor or independent variable to 

determine the nature of the relationship between the two. If this relationship is reasonably linear, 

then the corresponding predictor or independent variable can occur with a constant coefficient in 

the predictive model. If this relationship does not appear to be reasonably linear, then an 

appropriate transformation may be necessary on the concerned predictor or independent variable, 

so that the resulting (transformed) variable has a linear relationship with the dependent of 

response variable. The numerical analysis will involve calculations of some measures of 

association between the independent variables and the dependent variable. If all the variables are 

measured on an interval scale and scatter diagrams show a reasonably linear relationship, then 

the most common measure of the relationship is given by the coefficient of correlation, popularly 

known as Pearson’s correlation coefficient. If the relationship does not appear to be reasonably 

linear, then the correlation ratio can be useful. The correlation ratio is a coefficient of non-linear 

association. 
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