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ABSTRACT : 

  In this paper we have obtained exact analytical solutions of Einstein’s field equations 

in two cases for static anisotropic fluid sphere by assuming that space time is conformally flat. 

In first case a suitable form of energy density  has been taken and in second model a judicious 

choice of metri function g11 has been used. Both the models are physically realistic and free 

from singularities. We have also calculated energy density , radial and tangential pressures 

for both the models. It is found that densities for these models drop continuously from their 

maximum values at the centre to the values which are +ve at the boundary     

Key  Words :  Pressure, density, anisotropic, fluid sphere, conformal  

1. Introduction  

  Perfect fluid spheres with homogeneous density and isotropic pressure in general 

relativity were considered by Schwarzechild [20] and the solutions of relativistic field 

equations were obtained. Tolman [24] developed a mathematical method for solving Einstein’s 

field equations applied to static fluid spheres in such a manner as to provide explicit solutions 

in terms of known analytic functions. A number of new solutions were thus obtained and the 

properties of three of them were examined in detail. These solution were used by Oppenheiner 

and Volkoff (19) in the study of massive neutron cores. Mehra et. al. [18] have obtained a 

general solution of the field equations for a composite sphere having a number of shells of 

different densities. Durgapal and Gehlot [6] have obtained exact internal solutions for dense 

massive stars in which the central pressure and density are infinitely large. Durgapal and Gehlot 

[7,8] have further obtained exact solutions for a massive sphere with two different density 

distribution. The density being minimum at the surface varies inversely as the square of the 

distance from the centre. The distribution has a core of constant density and radius. Static and 

non-static solutions of Einstein’s field equations have also been extensively discussed by 

Leibovitz ([15(a))], [15(b)] for the spherical distribution. Solutions of Einstain’s field equations 



International Journal in IT & Engineering (IJITE) 
Volume 13 Issue 03, March 2025    ISSN: 2321-1776 Impact Factor: 8.341 
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com         
Double-Blind Peer Reviewed Refereed Open Access International Journal  

13 International Journal in Management and Social Science 
http://ijmr.net.in, Email: irjmss@gmail.com 

 

for perfect fluid sphere have been also studied by Adler [1], Whitman [25] Singh and Yadav 

[20(a)] and Yadav and Saini [26]. 

  In investigations concerning massive objects in general relativity the matter distribution 

is usually assumed to be locally isotopic. However, in the last few years theoretical studies on 

realistic steller models indicate that some massive objects may be locally anisotropc [1, 4, 17]. 

There are a number of interesting solutions that have provided insight into the effects of 

anisotropy on star parameters [5, 12, 14]. However, many of these solutions have a limited 

applicability to astrophysical situations since they do not satisfy certain physical restrictions 

usually imposed upon density and pressure, viz. that the pressures should not exceed the energy 

density (dominant energy condition), and that the (adiabatic) derivatives of the pressure with 

respect to the density should be less than or equal to unity [11] (macrocausality condition). 

  Exact analytical solutions of Einstein’s field equagtions are of much value in general 

relativity. These solutions are generally obtained by using different conditions and 

assumptions. One of the assumptions made for obtaining the solutions is that the space time be 

conformally flat. This assumption has been widely used in relativity. Theory [2, 3, 10, 16, 21]. 

For some other workers in this field see references [1(a), 5(a), 18(a), 19(a), 26, 27,]. 

  Here in this paper we have obtained two exact analytical solutions of Einstein’s field 

equations for static anisotropic fluid spheres by assuming that space time is conformally flat. 

In first case we have used a judicious choice of energy density  and in the second model we 

have chosen a suitable form of metric potential g11. Both the models are physically reasonable 

and free from singularities. Energy density , radual and tangential pressures have been 

calculated for both the models. It is seen that densities for these models drop continuously from 

their maximum values at the centre to the values which are positive at the boundary. 

2. The Field Equations and Their Solution 

  We take the line element in the form  

(2.1)  
2 2 2 2 2 2 2ds e dt e dr r (d sin d )         

  where  and  are functions of r only. The theory of spherically symmetric space-times  

has also been discussed in good detail by Takeno [23]. The Einstein’s field equations in general 

relativity   
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(2.2)  
i i i

j j j

1
R R 8 T

2
      

  For the metric (2.2.1) are (Tolman [24])] 

(2.3)  
1 2 2

18 T e / r 1/ r 1/ r          

(2.4)  
2 3 2

2 38 T 8 T e / 2 / 4 / 4 ( ) / 2r                      

(2.5)  
4 2 2

48 T e ( / r 1/ r ) 1/ r       

where a prime denotes differentiation with respect to r. Thoughout the investigation we set 

velocity of light c and gravitational constant k to be unity. The energy momentum tensor 
i

jT is 

given by  

(2.6)  
i i i

j j jT ( p)u u p     

The above field equations for anisotropic fluid sphere provide us  

(2.7)  
2 2e (1/ r / r) 1/ r 8       

(2.8)  
2 2

r1/ r e (1/ r / r) 8 p        

(2.9)  
2e [1/ 4 1/ 4 1/ 2 1/ 2( ) / r)] 8 p


                  

where  is is energy density and p1 and p are the radial and tangential “pressure” respectively. 

  For the spherically symmetric metric (2.1) non-vanishing components of the Wely 

tensor are  

(2.10)  
2

1212C 1/12 r 1/12 r 1/ 6e 1/ 6 1/ 24r             

               
2 2 21/ 24 r 1/12r      

       
2 2

1313 1212 1010 1212C sin C , C 2 e / r C    

           
2 2

2323 1212 2020 1212C 2sin e r C , C e C      

           
2

3030 1212C sin e C    
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  We assume that the space time is conformally flat for which vanishing of Weyl tensor 

[22] gives 

(2.10)   2 2

2

1 1
e / r / 4 / 4 / 2 0

r 2r

                

Now we use the transformations 

(2.11)  e    

(2.13)  2log y   

(2.13)  r2 = z 

So that equations (2.8), (2.9) and (2.10) may be combined to give. 

(2.14)  1z ,z 1 4 z(p p ) 0        

(2.15)  
2 2(4 z )y,z z (2z ,z 1)y 0        

where the subscript z following a comma denotes differentiation with respect to z. Integrations 

of equations (2.14) and (2.15) give  

(2.16)   
r

2 2

r
0

e 1 r 8 r (p p ) / r dr

         

(2.17)  
2 2 (r) (r) 2y e r [C e De ]      

        
2r [C exp( (r)) Dexp( (r))]     

where , C and D are the integration constants and  

(2.18)  

/ 2e
(r) dr

r



    

  The constants , C and D can be fixed by matching the metric functions (2.16) and 

(2.17) to the exterior Schwarzschild solution for a mass M and readius to given by 

(2.19)  

o(r )
3/ 2

2

0 0

e 3M 1 2M
C 1

2r r r

   
       
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(2.20)  

0(r ) / 2 3/ 2

0 0 0

e 1 3M (1 2M)
D

2r r r

   
  

 
 

(2.21)  0(r )

0

(1 2M)
e

r

 
  

3. Solution of the Field Equations  

  We see that equations (2.7) – (2.9) and (2.16), (2.18) are actually three equations in four 

unknowns r,p ,p and (r) . Thus the system is indeterminate. To make the system 

determinate, we require one more relation or condition. For this we choose any of these 

unknowns as a function of r or by specifying an equation of state for the stresses.  

Cases 1. 

 Here we choose the energy density as  

(3.1)  
2 2

3 1 1
8

(1 r ) 1 r 2

  
   

    
 

where  is a constant to be fixed up by boundary Conditions.  

This distribution has been already considered by Durgapal and Banerjee [9] for the perfect fluid 

solution. Now using (3.1) into (2.16) we get  

(3.2)  
2(1 x)

e
2 x

 



 

where  

(3.3)  

2

2

0

r
x

r
  

(3.4)  
0

0

4M / r

3 4M / r
 


 

and M and ro are the mass and radius of the sphere.  

Also the function (r) is given by  
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(3.5)  
2 1

0

1 2 x
e r exp 2 sin

3

    
   

  
 

     
X[4 x 2 2 ]

x

  
  

with  

(3.6)  
2 2 22 x x     

  Putting this into equation (2.17) and using C and D from (2.19) and (2.20) we can find 

e. The density, radial pressure and tangential pressure are obtained as  

(3.7)  
2

0

1 1
8 r

1 x 1 x 2

 
   

  
 

(3.8)  
2 2

0 0
2

0

4 4x(9 5h 2 2t) 5 x 2 x)Cx
8 pr e r

CXD
2xh x e r

D





      
  

 
  
 

 

(3.9) 

2
2 2

0 02
2

0

3 x Cx [9 h 2 2t x(9 5h 2 2t ]
8 p r e r

Cxh D
2xh x e r

B






      
  

 
  
 

  

Case II : Here we choose  

(3.10)  

m n

1

m n

2

(1 k r )

(1 k r )

 
   


 

where k1 and k2 are constants. Then we can find re , ,p and p

 from the field equations 

and using (2.15)-(2.21). Hower, for  

mathematical simplicity we particularize m = n = 2 and ki = A, kj 3A 

In this case we find the solution (by suitable adjustment of constants) as  

(3.11)  
/ 2 1 3 x

e
1 x

  


 
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(3.12)  

4 4
/ 2

2

(1 3 )(1 )(1 x) 4 x(1 )
e

[(1 3 )(1 )(1 x)]

          


     
 

(3.13)  

2 2
2

0 2

8 (3 2 x 3 x )
8 r

(1 3 x)

    
 

 
 

(3.14)  
2

r 08 P r  

 

4 2 2 4

4 2 2

16 [{(1 ) /(1 3 )(1 ) 1) [(1 2 x 3 x ) (1 x) ]

[4 {(1 ) /(1 3 )(1 ) 1}x(1 x) ](1 3 x)

               


           
 

(3.15)  

2
2 2

0 r 02

16 x(5 3 x)
8 p r 8 p r

(1 3 x)


  
    

 
 

where 

2

2

0

r
x

r
  

1 M

1 3M


 


 

0

1 2M
M

r


  

Case III : If we choose the equation state  

  rp p  

Then in this case the well known Schwarzschild interior solution is obtained. 

4. Discussion  

  Here we have obtained two analytical solutions of Einstein’s field equations for static 

fluid spheres with anisotropic pressure which are exact. Both the solutions I and II are free 

from singularities and densities of these fluid sphere drop continuously from their maximum 

values at the centre to values which are positive at the boundary. Again these solutions have 

reasonable equation of state for masses less than about 0.42 and 0.435 times the radius of fluid 

sphere (in geometric units) respectively. These solutions may be used in describing 

ultracompact objects [13]. From equations (3.9) and (3.5) we see that for the two models 
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rp p at the centre when as i rp p for r > 0. Further it is easy to prove that in the low mass 

limit, m << r0 the solutions in case I and Ii and the constant density solution of Schwarzschild 

have (to the first order approximation in M/r0) the same common limit given by  

(4.1)  

0

2M
e 1 x,

r

  
   

 
 

(4.2)  

0

M
e 1 (3 x)

r

  
   

 
 

Where as in case I and II 

 

2

2

0

r
x

r
  
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