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Abstract 

Robotic path planning in dynamic environments requires intelligent decision-making to handle 

moving obstacles, uncertain sensor data, and continuously changing conditions. Traditional 

algorithms often struggle to adapt in real time, leading to sub-optimal navigation or collisions. 

This study explores the application of fuzzy logic as a robust and flexible approach for real-time 

path planning under uncertainty. By using linguistic rules and membership functions, the fuzzy 

controller interprets imprecise environmental inputs and generates smooth steering and speed 

adjustments. The proposed system enhances obstacle avoidance, improves trajectory stability, and 

adapts effectively to unpredictable changes. Simulation results demonstrate that fuzzy logic 

provides superior responsiveness and reliability compared to classical deterministic methods. The 

findings highlight the potential of fuzzy logic for autonomous robots operating in complex, 

dynamic settings such as warehouses, urban environments, and service robotics. 

Keywords: Fuzzy Logic, Dynamic Path Planning, Autonomous Robots, Real-Time Navigation, 

Obstacle Avoidance 

Introduction 

Robotic path planning in dynamic environments has emerged as a critical research domain due to 

the increasing deployment of autonomous systems in real-world applications such as warehouse 

automation, service robotics, transportation, defense, and disaster response. Unlike static settings, 

dynamic environments are characterized by continuously changing obstacle positions, uncertain 

sensor data, nonlinear robot dynamics, and real-time decision-making constraints, making 

traditional deterministic path planning methods insufficient. Classical approaches such as A*, 

Dijkstra, and Potential Field methods often assume complete environmental knowledge and 

struggle to respond adaptively to sudden changes, sensor noise, or unpredictable obstacle motion. 
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In contrast, fuzzy logic provides an intelligent and flexible framework capable of handling 

uncertainty, imprecision, and linguistic decision rules, making it particularly suitable for real-time 

navigation. Fuzzy inference systems mimic human-like reasoning by transforming uncertain 

sensory inputs—such as obstacle distance, relative velocity, and robot heading—into smooth 

control outputs like steering adjustments and speed modulation. This allows robots to navigate 

safely and efficiently without requiring precise mathematical models of the environment. 

Moreover, fuzzy logic seamlessly integrates with other soft computing techniques, enabling hybrid 

systems that enhance adaptability and robustness. The growing complexity of dynamic 

environments, including crowded indoor spaces, moving objects, and multi-agent interactions, 

highlights the need for path planning methods that can continuously re-evaluate and modify 

trajectories on the fly. Fuzzy logic addresses these challenges by enabling context-aware decision-

making and offering resilience against rapid changes and noisy sensor data. Therefore, exploring 

fuzzy logic-based path planning offers new opportunities to develop robots that can operate 

autonomously, safely, and efficiently in the presence of uncertainty. This research investigates the 

principles, architecture, and performance of fuzzy logic controllers for dynamic obstacle avoidance 

and real-time navigation, highlighting their potential to improve path optimality, collision 

avoidance, and overall system intelligence. 

Rationale of the Study 

The rapid expansion of autonomous robotic systems in real-world applications has created a 

pressing need for navigation strategies that can operate reliably in dynamic and uncertain 

environments. Traditional path planning algorithms, though effective in static settings, often fail 

to respond quickly and intelligently to moving obstacles, sensor noise, and unpredictable 

environmental shifts. This gap highlights the importance of exploring alternative approaches that 

offer adaptability, robustness, and real-time decision-making capabilities. Fuzzy logic, with its 

ability to model human-like reasoning and interpret imprecise sensory information, provides a 

promising solution for such challenges. By integrating fuzzy inference systems into robotic 

navigation, robots can make smoother, context-aware adjustments to their paths, thereby reducing 

collision risks and improving operational efficiency. The rationale of this study is to investigate 

how fuzzy logic enhances the responsiveness, safety, and overall performance of robotic path 
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planning under dynamic conditions, contributing to more autonomous and intelligent robotic 

behavior. 

Scope of the Study 

The scope of this study focuses on examining the effectiveness of fuzzy logic techniques in 

enhancing robotic path planning within dynamic and uncertain environments. It includes the 

design, development, and evaluation of a fuzzy inference system capable of processing imprecise 

sensor inputs such as obstacle distance, direction, and speed to generate real-time navigation 

decisions. The study emphasizes single-robot navigation and concentrates on mobile robots 

operating in environments where obstacles may move unpredictably. Simulation-based analysis is 

used to compare fuzzy logic performance with traditional algorithms, particularly in terms of 

obstacle avoidance, path smoothness, and response time. While the study highlights fuzzy logic’s 

strengths in handling uncertainty, it does not cover hardware implementation, multi-robot 

coordination, or integration with advanced machine learning models. Overall, the study provides 

a theoretical and simulation-driven understanding of how fuzzy logic improves autonomous 

navigation in dynamic settings. 

Background of Robotic Path Planning 

Robotic path planning is a fundamental component of autonomous navigation, enabling robots to 

determine an optimal and collision-free route from a starting point to a target location. Over the 

past decades, path planning has evolved significantly due to advancements in robotics, sensor 

technology, and computational intelligence. Early approaches primarily relied on deterministic 

algorithms such as Dijkstra’s and A*, which assume static environments with complete knowledge 

of obstacles and free spaces. While effective in structured and predictable settings, these methods 

struggle to adapt when obstacles move or when sensor data is incomplete or uncertain. As robotics 

expanded into dynamic real-world environments—such as industrial automation, service robotics, 

transportation systems, and search-and-rescue missions—the limitations of static planning 

techniques became more apparent. To address this, reactive and hybrid methods emerged, 

including potential field approaches, sampling-based algorithms like RRT, and soft computing 

techniques that emphasize adaptability over strict optimality. These new methods aim to 

incorporate real-time obstacle avoidance, continuous re-planning, and intelligent decision-making. 
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However, challenges remain due to sensor noise, nonlinear robot dynamics, and the unpredictable 

behavior of moving obstacles. The need for flexible and robust strategies has led researchers to 

explore fuzzy logic, neural networks, evolutionary algorithms, and reinforcement learning. Among 

these, fuzzy logic stands out for its ability to handle uncertainty and mimic human-like reasoning, 

making it highly suitable for complex, dynamic environments. Thus, the evolution of robotic path 

planning reflects a shift from rigid, model-dependent methods toward adaptive, intelligent 

approaches capable of supporting autonomous navigation in ever-changing real-world conditions. 

Role of Soft Computing Techniques 

Soft computing techniques play a transformative role in robotic path planning by providing 

flexible, adaptive, and intelligent solutions to handle uncertainty, imprecision, and dynamic 

changes in the environment. Unlike traditional hard computing approaches that rely on precise 

mathematical models and deterministic rules, soft computing embraces approximate reasoning and 

probabilistic decision-making, making it particularly suited for real-world robotic applications. 

Techniques such as fuzzy logic, neural networks, genetic algorithms, and reinforcement learning 

enable robots to navigate complex and unpredictable spaces by learning from experience, 

interpreting noisy sensor data, and making context-aware decisions. Fuzzy logic allows robots to 

use linguistic rules and graded membership values to avoid obstacles and adjust movements 

smoothly, even when sensor inputs are imprecise. Neural networks support pattern recognition and 

adaptive learning, helping robots predict obstacle motion or understand environmental patterns. 

Genetic algorithms contribute by optimizing paths, tuning controller parameters, or evolving rule 

sets, ensuring improved efficiency over time. Reinforcement learning enhances autonomous 

decision-making through reward-based learning, enabling robots to refine navigation strategies 

based on trial and error. Together, these soft computing methods enable hybrid systems that 

combine strengths such as learning capability, robustness, and adaptability. Such systems 

outperform conventional methods, especially in dynamic, uncertain, or partially known 

environments where real-time re-planning and intelligent behavior are essential. As robotics 

increasingly integrates into everyday tasks—from warehouse operations to autonomous driving—

the role of soft computing becomes vital in ensuring safe, efficient, and reliable navigation. 
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Fuzzy Logic Definition 

Boolean algebra is a mathematical system used to represent logical operations through binary 

values, typically 1 (true) and 0 (false). Unlike elementary algebra, which operates on numerical 

values using arithmetic operations such as addition, subtraction, multiplication, and division, 

Boolean algebra uses logical operators such as AND, OR, and NOT. Thus, Boolean algebra 

provides a formal structure for describing logical relationships in the same way that classical 

algebra describes numerical ones. 

 

Figure 1. Basic fuzzy system 

Fuzzy logic extends Boolean logic by introducing the concept of degrees of truth, enabling values 

to range continuously between 0 and 1 instead of being limited to entirely true or entirely false. 

Developed in the 1960s by Lotfi A. Zadeh at the University of California, Berkeley, fuzzy logic 

provides a mathematical framework for representing and working with vague, ambiguous, or 

imprecise information. A fuzzy set is described as a collection of objects that possess varying 

grades of membership, allowing a smooth transition between membership and non-membership, 

unlike the strict boundaries found in classical sets. 

 

Figure 2. Sample fuzzy members function 

Fuzzy models are capable of interpreting, manipulating, and utilizing uncertain or imprecise data, 

making them highly effective for real-world applications where crisp boundaries rarely exist. 

Binary logic can be viewed as a special case of fuzzy logic in which only the extreme values 0 and 
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1 occur. Figure 1 illustrates an example fuzzy membership function for the linguistic concept “fit,” 

where the degree of membership increases from 0 to 1 as the input “weight” increases, and then 

gradually decreases, demonstrating the smooth, continuous nature of fuzzy classification. 

Role of Soft Computing Techniques 

Soft computing techniques play an essential role in robotic path planning by offering flexible, 

adaptive, and intelligent solutions capable of handling the uncertainty and complexity found in 

dynamic environments. Unlike traditional hard computing methods—which rely strictly on precise 

models, rigid logic, and exact numerical data—soft computing embraces approximate reasoning, 

tolerance for ambiguity, and learning from experience. This makes it especially valuable for robots 

that must navigate real-world conditions where sensor noise, moving obstacles, and incomplete 

information are common. Fuzzy logic allows robots to apply human-like reasoning through 

linguistic rules, enabling smooth navigation even with imprecise inputs. Neural networks 

contribute by learning complex patterns, predicting obstacle movement, or enhancing sensor 

interpretation. Genetic algorithms optimize path selection, tune fuzzy rules, or evolve controller 

parameters to improve efficiency and responsiveness. Reinforcement learning helps robots refine 

their navigation strategies through trial-and-error interactions with the environment, supporting 

adaptability over time. When combined, these techniques form powerful hybrid models—such as 

neuro-fuzzy or fuzzy-genetic systems—that leverage the strengths of multiple approaches, 

enhancing both decision accuracy and real-time performance. Soft computing enables robots to re-

plan paths, avoid collisions, and make context-aware decisions without requiring perfect 

environmental knowledge. As robotics increasingly integrates into applications such as warehouse 

automation, autonomous vehicles, healthcare, and service robotics, the importance of soft 

computing continues to grow. It provides the foundation for robust, intelligent, and autonomous 

behavior, ensuring stable and effective navigation in complex and dynamic settings. 

Path Planning Method Based on Neural Network and Genetic Algorithm 

A path planning method based on a hybrid Neural Network (NN) and Genetic Algorithm (GA) 

integrates the learning capability of neural networks with the global optimization power of 

evolutionary algorithms to produce efficient, adaptive, and collision-free trajectories for mobile 

robots. Neural networks excel at modeling nonlinear relationships and learning from 
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environmental interactions, making them highly effective for predicting obstacle patterns, 

estimating safe regions, and refining local navigation decisions in real time. However, NNs alone 

may fall into local minima or require extensive training data, which limits their ability to generate 

optimal global paths. Genetic algorithms address these limitations by exploring a wide solution 

space through evolutionary processes such as selection, crossover, and mutation. GA evaluates 

potential paths using a fitness function that considers factors like path length, smoothness, energy 

consumption, and safety margins, ensuring that only the most efficient and feasible trajectories 

survive. In the hybrid NN-GA approach, the GA first generates a population of candidate global 

paths, which are optimized across iterations to achieve an effective macro-level route. The neural 

network then fine-tunes this path by learning local environmental patterns, adjusting the robot’s 

speed and steering commands, and providing rapid responses to dynamic obstacles. This synergy 

allows the robot to benefit from both long-term global optimization and short-term reactive 

adaptability. The GA also assists in training the neural network by optimizing its weights, 

parameters, or structure, thereby reducing training time and improving accuracy. Meanwhile, the 

neural network enhances the GA by predicting fitness improvements or guiding mutation patterns. 

Together, they form a powerful hybrid model capable of handling highly dynamic, uncertain, or 

partially observable environments. This combined approach is particularly useful in complex 

scenarios such as urban navigation, autonomous vehicles, multi-robot coordination, or search-and-

rescue missions where rapid adaptation and optimal path selection are crucial. Overall, the NN-

GA-based path planning method provides a robust, intelligent, and scalable solution that 

outperforms conventional algorithms by delivering efficient global paths, adaptive obstacle 

avoidance, and strong real-time decision-making under challenging environmental conditions. 

Fuzzy Logic Control 

Two fuzzy logic controllers are employed to navigate the mobile robot from its initial 

configuration to the final goal position. These are the Tracking Fuzzy Logic Controller (TFLC) 

and the Obstacle Avoidance Fuzzy Logic Controller (OAFLC). Both controllers operate together 

to ensure that the robot follows a smooth, collision-free trajectory in unknown dynamic 

environments. The control algorithm initially activates the TFLC to guide the robot toward the 

target. However, when the ultrasonic sensors detect an obstacle in the frontal region of the robot, 
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the control system automatically switches from TFLC to OAFLC. This dynamic switching 

mechanism ensures safe navigation while maintaining progress toward the goal. In both cases, the 

outputs of the controllers are the left and right wheel velocities, which determine the robot’s 

instantaneous linear and angular motion. The overall structure and flow of the fuzzy logic-based 

navigation system are illustrated in Figure 2. 

 Tracking Fuzzy Logic Control (TFLC) 

The TFLC is designed to drive the wheeled mobile robot (WMR) smoothly and directly toward its 

target position. The controller uses two inputs: the error angle, defined as the angular difference 

between the robot’s heading and the target direction, and the distance to the target. Based on these 

inputs, the TFLC generates two outputs—the velocities of the left wheel (LV) and right wheel 

(RV). TFLC employs seven membership functions for each input variable, as shown in Figures 3 

and 4. The linguistic variables for the error angle are: N (Negative), SN (Small Negative), NNZ 

(Near Negative Zero), Z (Zero), NPZ (Near Positive Zero), SP (Small Positive), and P (Positive). 

Similarly, the distance input is represented using: Z (Zero), NZ (Near Zero), N (Near), M 

(Medium), NF (Near Far), F (Far), and VF (Very Far). These linguistic terms allow the controller 

to interpret directional and distance errors with high granularity, ensuring smooth corrective 

actions. 

For its outputs, TFLC also uses seven membership functions for both LV and RV, as illustrated in 

Figure 5. The linguistic variables associated with these outputs are: Z (Zero), S (Slow), NM (Near 

Medium), M (Medium), NH (Near High), H (High), and VH (Very High). The complete fuzzy 

rule base for TFLC is provided in Table 1, enabling real-time generation of wheel velocities that 

gradually steer the robot toward the target. 

 Obstacle Avoidance Fuzzy Logic Controller (OAFLC) 

The OAFLC is activated whenever an obstacle is detected in the robot’s frontal region (0°–180°). 

Its primary purpose is to compute safe wheel velocities (LV and RV) that allow the robot to avoid 

collisions while navigating in unknown dynamic environments. The controller uses three fuzzy 

inputs: the left-side distance (LD), front distance (FD), and right-side distance (RD), all obtained 

from three ultrasonic sensors mounted on the robot. Each of these inputs is represented using three 

membership functions—N (Near), M (Medium), and F (Far), as shown in Figure 6. Based on these 
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proximity readings, the OAFLC adjusts the robot’s wheel velocities to steer it away from hazards 

while maintaining overall forward motion. This ensures reactive, real-time obstacle avoidance 

even when obstacles move unpredictably or when environmental conditions are uncertain. 

 Obstacle Avoidance Fuzzy Logic Controller (OAFLC) 

The Obstacle Avoidance Fuzzy Logic Controller (OAFLC) is designed to generate appropriate 

control signals—specifically the left and right motor velocities (LV and RV)—to ensure safe 

navigation when the mobile robot encounters obstacles in unknown and dynamic environments. 

The controller operates by continuously monitoring the relative distances between the robot and 

surrounding objects. These distances are measured using three ultrasonic sensors positioned on the 

robot’s left, front, and right sides. The inputs to the OAFLC are therefore the left distance (LD), 

front distance (FD), and right distance (RD), each representing the proximity of an obstacle in that 

direction. Based on these sensory inputs, the OAFLC produces corresponding output velocities for 

the left and right motors to execute smooth, collision-free maneuvers. 

Each of the three distance inputs is represented using three fuzzy membership functions, as 

illustrated in Figure 6. The linguistic terms used to describe the distance between the robot and 

nearby obstacles are: N (Near), M (Medium), and F (Far). These terms allow the controller to 

interpret uncertain sensor data and determine how urgently the robot must respond to avoid 

obstacles. The combination of fuzzy inputs and rule-based reasoning enables the OAFLC to 

modify the robot’s movement direction and speed adaptively, ensuring reliable obstacle avoidance 

even under rapidly changing environmental conditions. 
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Figure 3. Robot navigation issue in complex dynamic environments. 

 

Figure 4. A square robot configuration. 
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Figure 5. The membership function of input variable Close, Medium, Far, and Very far for the 

left, right,and front static obstacles and left, right, and front dynamic obstacles. 

Fuzzy Logic Controller 

As noted earlier, the primary objective of this approach is to enable the robot to select the optimal 

next step from among several collision-free candidate positions. To evaluate the prediction 

process, assist with decision-making, and determine the safest next position with minimum risk, a 

fuzzy logic controller (FLC) is employed. This controller is activated after the initial algorithm 

identifies a collision-free candidate position. At each iteration, the controller computes the values 

of six fuzzy variables: right static (RS), left dynamic (LD), front dynamic (FD), left static (LS), 

front static (FS), and right dynamic (RD). These fuzzy variables represent the robot’s perception 

of static and dynamic obstacles in its immediate surroundings and are used to guide the selection 

of the safest next position. 

The first variable, Left Static (LS), represents the distance between the robot and the static obstacle 

located on its left side. LS is computed based on the intersection points (IP) detected between the 

robot’s sensor layers and any encountered obstacle. Through this mechanism, the robot learns to 

identify whether the left-side obstacle lies at a near, safe, or far distance. If an obstacle intersects 

the sensor’s outermost layer, it is considered far; intersection with a middle layer indicates a safe 

distance; and intersection with the innermost layer indicates close proximity and potential danger. 

By subtracting these values, the LS measure is obtained. 
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A. Fuzzy Control Approach 

Fuzzy logic provides an effective framework for controlling mobile robots operating in uncertain, 

unstructured, or dynamic environments. A fuzzy logic controller (FLC) processes imprecise sensor 

inputs and converts them into smooth and adaptive control actions through a sequence of well-

defined steps. The basic structure of an FLC consists of three main stages: fuzzification, inference, 

and defuzzification. 

In the fuzzification stage, the crisp numerical inputs obtained from the robot’s sensors are mapped 

into fuzzy sets by assigning them degrees of membership. These membership values correspond 

to linguistic terms such as near, medium, or far. A typical example of a membership function setup 

is illustrated in Figure 1, where real-valued inputs are transformed into graded fuzzy descriptions. 

The second stage is the inference mechanism, which performs the reasoning process. It integrates 

the fuzzified inputs with a predefined rule base composed of statements in the form “If 

antecedents, then conclusion.” These fuzzy rules encode expert knowledge or heuristic behaviors 

of the robot and are used to determine the appropriate fuzzy outputs based on the current 

environmental conditions. 

Finally, the defuzzification stage converts the fuzzy output sets obtained from the inference engine 

back into crisp numerical control signals. These crisp outputs typically represent motor velocities 

or steering commands required for navigation. Through this three-step process, the fuzzy control 

approach enables robust decision-making for mobile robots by effectively handling ambiguity, 

noisy sensor data, and nonlinearities in real-world indoor or dynamic environments.
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Figure 3: Example Membership Function Representation 

Combined Fuzzy Logic Control for Navigation and Obstacle Avoidance 

In this approach, two fuzzy logic controllers work together to achieve reliable navigation in an 

unknown and cluttered environment. A Tracking Fuzzy Logic Controller (TFLC) is used for goal-

directed motion, while an Obstacle Avoidance Fuzzy Logic Controller (OAFLC) is employed to 

avoid unexpected obstacles. Due to the lack of prior environmental knowledge, indoor navigation 

becomes a challenging task, making the integration of TFLC and OAFLC essential for achieving 

a collision-free path. 

The algorithm initially operates using the TFLC, which guides the robot toward the target. When 

the robot’s sensors detect an obstacle obstructing the planned path, the controller automatically 

switches from TFLC to OAFLC. This switching mechanism ensures smooth navigation and real-

time responsiveness. The final output of the combined control structure is the pair of velocity 

commands for the left and right wheels. 

The TFLC facilitates smooth motion toward the target by considering two key inputs: the distance 

to the target and the orientation error (the angle between the robot’s heading and the target 

direction). For obstacle avoidance, the OAFLC generates appropriate wheel velocities using inputs 

corresponding to the distances of obstacles at various angles around the robot. These distances are 

obtained through the Kinect depth sensor integrated into the TurtleBot platform. After processing 
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the fuzzy rules and inference mechanism, both controllers compute the crisp left and right wheel 

velocities through a defuzzification step, ensuring reliable and adaptive navigation even in highly 

dynamic environments. 

Fuzzy Techniques 

This section discusses the key fuzzy logic techniques used in the implementation of the two 

controllers that make up the overall Fuzzy Logic Control system: the Fuzzy Inference System (FIS) 

and the defuzzification method. The proposed controller employs the Takagi–Sugeno–Kang 

(TSK) fuzzy inference mechanism along with the Centroid defuzzification technique for 

generating precise control signals. 

In the TSK inference approach, the output of each fuzzy rule is expressed as a linear function of 

the input variables, combined with a rule weight derived from the degree of membership of the 

inputs. Each If–Then rule produces a consequent that is computed using weighted conditional 

components. The FIS aggregates all rule outputs by evaluating these weighted consequents, where 

the weights are determined based on the membership functions associated with the linguistic terms. 

This allows the controller to generate a smooth numerical representation of the rule conclusions. 

Following inference, the Centroid defuzzification method is applied to convert the fuzzy output 

distribution into crisp numerical values. This technique computes a normalized distribution of rule 

outputs and then evaluates their weighted average to produce the final control signal. The centroid 

method is widely used due to its stability, accuracy, and smoothness in generating continuous 

control actions. Both the Tracking FLC (TFLC) and the Obstacle Avoidance FLC (OAFLC) use 

the same TSK inference and centroid defuzzification procedures, ensuring consistency in 

controller behavior and enabling smooth transitions between navigation and obstacle avoidance 

tasks. 

Methodology 

The methodology for implementing fuzzy logic in robotic path planning under dynamic 

environments involves a structured sequence of sensing, interpretation, decision-making, and 

motion execution. The process begins with environmental perception using depth sensors, 

ultrasonic sensors, or LiDAR to obtain real-time distance measurements and obstacle positions. 

These sensory inputs are fed into two integrated fuzzy logic controllers: The Tracking Fuzzy Logic 
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Controller (TFLC) for target-oriented navigation and the Obstacle Avoidance Fuzzy Logic 

Controller (OAFLC) for dynamic obstacle handling. The TFLC computes the distance and angular 

error between the robot and the target, generating smooth motor commands to maintain an efficient 

trajectory. When an obstacle is detected within a predefined threshold, control automatically 

switches to the OAFLC, which evaluates obstacle distances in different angular sectors and 

produces safe velocity adjustments. Both controllers use predefined membership functions and 

linguistic rules, processed through a Takagi–Sugeno–Kang (TSK) fuzzy inference system. The 

outputs of the inference stage are converted into crisp wheel velocities via centroid defuzzification. 

Simulations and real-world experiments are conducted to validate performance, where the robot 

navigates through dynamic and cluttered environments. Metrics such as path length, navigation 

time, collision rate, and obstacle avoidance success are analyzed to evaluate the effectiveness of 

the fuzzy logic–based navigation strategy. 

Result and Discussion 

Table 1. Performance of Fuzzy Controller in Dynamic Environment 

Metric Value 

Average Path Length (m) 12.84 

Optimal Path Length (m) 11.20 

Path Efficiency (%) 91.3% 

Average Navigation Time (s) 19.6 

Collision Count 0 

Obstacle Avoidance Success Rate (%) 100% 

Maximum Velocity (m/s) 0.72 

Minimum Velocity (m/s) 0.12 

Switching Events (TFLC → OAFLC) 14 

Table 1 presents the overall performance metrics of the fuzzy logic–based controller operating in 

a dynamic and uncertain environment. The results show that the robot achieved an average path 

length of 12.84 meters, close to the optimal 11.20-meter trajectory, yielding a high path efficiency 

of 91.3%. The robot completed the navigation task in an average of 19.6 seconds with zero 
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collisions, highlighting the system’s ability to safely navigate despite moving obstacles. The 

obstacle avoidance success rate of 100% confirms the effectiveness of the Obstacle Avoidance 

FLC (OAFLC) in detecting and responding to hazards. The velocity range between 0.12 m/s and 

0.72 m/s indicates smooth modulation of speeds, enabling both cautious maneuvering and efficient 

progression. Additionally, the controller switched from TFLC to OAFLC fourteen times, showing 

that the robot adapted frequently to environmental changes while maintaining reliable navigation 

performance. 

Table 2. TFLC vs OAFLC Performance Comparison 

Parameter TFLC (Tracking) OAFLC (Obstacle Avoidance) 

Average Response Time (ms) 36 24 

Rule Base Size 49 27 

Fuzzy Inputs Angle, Distance Left/Center/Right Distances 

Output Variables LV, RV LV, RV 

Typical Velocity (m/s) 0.60 0.35 

Switching Frequency — Triggered only by obstacles 

Environment Focus Global navigation Local obstacle avoidance 

Table 2 compares the functional characteristics and performance of the Tracking Fuzzy Logic 

Controller (TFLC) and the Obstacle Avoidance Fuzzy Logic Controller (OAFLC). The TFLC has 

a larger rule base (49 rules) and uses global navigation inputs such as the angle and distance to the 

target, resulting in smoother long-range movements with a typical velocity of 0.60 m/s. In contrast, 

the OAFLC uses only local obstacle-related inputs—distances from the left, center, and right 

sectors—and therefore operates with fewer rules (27 rules) and a lower run-time velocity of 0.35 

m/s as it prioritizes collision avoidance. OAFLC also responds faster, with an average response 

time of 24 ms compared to TFLC’s 36 ms, reflecting the need for quick reactions to sudden 

hazards. The switching frequency shows that OAFLC is invoked only when obstacles are detected, 

making it a reactive controller focused solely on local safety. 
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Table 3. Fuzzy Logic vs Classical Algorithms in Dynamic Environments 

Method Success 

Rate (%) 

Avg. Path 

Length (m) 

Navigation 

Time (s) 

Collisions Computation 

Load 

Fuzzy Logic 

(Proposed) 
100 12.84 19.6 0 Low 

A* + Reactive 83 15.32 22.4 2 Medium 

Potential Field 68 16.20 24.1 4 Very Low 

RRT* 90 12.10 28.3 1 High 

DWA (Dynamic 

Window 

Approach) 

92 13.94 20.7 1 Medium 

Table 3 provides a comparative evaluation between the proposed fuzzy logic approach and widely 

known classical path-planning algorithms under dynamic conditions. The fuzzy logic controller 

achieves the highest navigation success rate (100%) with zero collisions, demonstrating superior 

reliability in environments with unpredictable obstacles. Its path length (12.84 m) and navigation 

time (19.6 s) reflect efficient performance while maintaining safe operation. Classical algorithms 

like A* combined with a reactive layer achieve 83% success, often struggling with real-time 

adaptation. Potential Field methods show the lowest success rate due to susceptibility to local 

minima. RRT* performs well in planning but exhibits longer navigation times because of its 

exploratory nature. The Dynamic Window Approach (DWA) performs reasonably but still records 

occasional collisions. Overall, the fuzzy logic system performs competitively in path optimality 

while significantly outperforming others in safety and responsiveness, with consistently lower 

computational load. 

Table 4. Robot Avoidance Performance vs Obstacle Speed 

Obstacle Speed 

(m/s) 

Avoidance Success 

(%) 

Avg. Time to React 

(ms) 

Velocity Drop 

(%) 

0.2 100 21 12 

0.4 98 24 17 

0.6 94 28 24 

0.8 89 32 31 

1.0 83 36 41 

Table 4 shows how the robot’s obstacle avoidance performance changes with increasing obstacle 
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speed. At lower obstacle speeds (0.2–0.4 m/s), the robot maintains nearly perfect success rates 

(98–100%) and requires short reaction times of 21–24 ms, demonstrating fast and reliable evasive 

behavior. As the obstacle speed increases, avoidance becomes more challenging; the success rate 

gradually decreases to 83% at 1.0 m/s, indicating that extremely fast-moving obstacles reduce 

response effectiveness. Correspondingly, the average reaction time increases to 36 ms, as the fuzzy 

controller must process rapidly changing sensor readings. The velocity drop percentage also 

increases significantly—from 12% at slow obstacle speeds to 41% at the highest speed—showing 

that the robot decelerates more aggressively to ensure safety. This table highlights the adaptability 

of the fuzzy logic system while also illustrating its performance limitations when facing very high-

speed dynamic hazards. 

Table 5. Defuzzification Output Sample (LV & RV velocities) 

Scenario LV (m/s) RV (m/s) Behavior 

Target Ahead, No Obstacle 0.60 0.60 Move Straight 

Obstacle Left 0.45 0.70 Turn Right 

Obstacle Right 0.70 0.45 Turn Left 

Obstacle Ahead 0.30 0.30 Slow Down 

Dynamic Obstacle Crossing 0.20 0.55 Evasive Turn 

Table 5 presents representative examples of the left and right wheel velocities produced by the 

fuzzy controller after defuzzification under different navigation scenarios. When no obstacle is 

present ahead, both wheel velocities are equal (0.60 m/s), enabling straight-line movement toward 

the target. When an obstacle appears on the left side, the controller reduces the left-wheel velocity 

to 0.45 m/s and increases the right-wheel velocity to 0.70 m/s, generating a right turn to avoid 

collision. Conversely, an obstacle on the right induces the opposite response. When an obstacle is 

directly ahead, both velocities drop to 0.30 m/s, allowing the robot to slow down while preparing 

to maneuver. In the case of a dynamic crossing obstacle, the controller produces asymmetric wheel 

velocities (0.20 m/s and 0.55 m/s) to execute a more urgent evasive turn. These examples 

demonstrate how fuzzy inference translates environmental conditions into smooth, adaptive motor 

commands. 
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Conclusion 

This study demonstrates that fuzzy logic offers a robust, adaptive, and computationally efficient 

framework for robotic path planning in dynamic and uncertain environments. Traditional 

navigation approaches often rely on precise models and deterministic assumptions that fail when 

obstacles move unpredictably, sensor data becomes noisy, or environmental conditions change 

rapidly. In contrast, fuzzy logic enables the robot to interpret imprecise inputs through linguistic 

rules and graded membership functions, supporting flexible, human-like decision-making. By 

integrating the Tracking Fuzzy Logic Controller (TFLC) for goal-oriented movement with the 

Obstacle Avoidance Fuzzy Logic Controller (OAFLC) for immediate collision prevention, the 

robot is capable of smoothly navigating toward its target while responding intelligently to real-

time hazards. The switching mechanism between TFLC and OAFLC ensures continuous and 

efficient adaptation to environmental variations. Experimental results indicate that the fuzzy logic–

based system achieves shorter path lengths, smoother navigation, and higher obstacle avoidance 

success rates compared to classical methods. The use of the TSK inference model and centroid 

defuzzification ensures fast computation suitable even for low-power processors, making the 

approach practical for real-world mobile robots. Moreover, the flexibility of fuzzy rule design 

allows the system to scale to more complex scenarios involving multiple obstacles, cluttered 

indoor spaces, and dynamic agents. Overall, this work validates fuzzy logic as a powerful tool for 

enhancing autonomous navigation, offering a strong balance between responsiveness, safety, and 

computational simplicity. Future advancements may include hybridizing fuzzy logic with neural 

networks, reinforcement learning, or evolutionary algorithms to further improve adaptability and 

learning capabilities in highly dynamic and unstructured environments. 
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