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1. INTRODUCTION 

Abstract— This paper reduces the network repair traffic and recovery from multiple node failures in a cloud storage environment. 

Suppose if a cloud suffers from permanent failure and loses all its data by more than one node, then we need to regenerate the lost data 

with the help of the other neighboring clouds. We design a proxy based storage system for fault tolerant multiple cloud storage called 

NC cloud, which achieves reduction in repair traffic for a permanent multi cloud failure. Functional minimum storage regenerating 

[FMSR] codes is used for regenerating data in multicloud failure. we also prove that FMSR codes reduces repair traffic and incur less 

monitory cost during data transfer than Erasure [RAID-6] codes and EMSR [exact minimum storage regenerating]codes. 

. 
Index Terms—multicloud, regenerating codes, repair traffic, fault tolerance, recovery. 

Cloud storage denotes a family of increasingly popular on-
line services for archiving, backup, and even primary storage of 
files.[11] Cloud-storage providers offer users clean and simple file 
system interfaces and also raises concerns such as having single or 
multi point of failure and vendor lock- ins[7][1][4]. A possible 
solution is to distribute data across different cloud Providers and by 
exploiting the diversity of multiple clouds as suggested in 
[10][11][1].Using this we can improve the fault tolerance of cloud 

storage. 
   Cloud storage denotes a family of increasingly popular on-line 
services for archiving, backup, and even primary storage of files.[11] 
Cloud-storage providers offer users clean and simple file-system 
interfaces and also raises concerns such as having single or multi 
point of failure and vendor lock- ins[7][1][4]. A possible solution is to 
distribute data across different cloud providers and by exploiting the 
diversity of multiple clouds as suggested in [10][11][4].Using this we 

can improve the fault tolerance of cloud storage. 
From disk arrays through clouds to archival systems, 

storage systems must tolerate failures and prevent data loss. There are 

2 types of cloud failures: Transient and permanent failures. Erasure 

coding provides the fundamental technology for storage systems to 

add redundancy and tolerate short-term transient failures or 

foreseeable permanent failures[1].Amazon S3 [1] is a well known 

example for a permanent failure during 2011[12]. 
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 So this paper focuses on unexpected permanent cloud failures. 

   When a permanent failure of a cloud occurs, it is necessary to activate 

repair in order to maintain redundancy of data and fault tolerance. Since 
data has been striped across different cloud providers, the repair 
operation recovers data from existing surviving clouds over the network 
and restores the lost data in a new cloud. Moving an enormous amount of 
data across clouds can introduce significant monetary costs. So it is 
important to reduce the network repair traffic (i.e., the amount of data 
being transferred over the network during repair), storing data 
redundantly and hence the monetary costs due to data migration. 

 Redundancy can be achieved by two common 

methods , replication and erasure coding. Replication is the simplest 
redundancy scheme, where c identical copies of a file are kept at c nodes, 
each node with one copy. The other is an (n, k) Maximum-Distance 
Separable (MDS) code, where each file of size M bytes is divided into k 
fragments of size M/k bytes and the k fragments are encoded into n 
fragments stored at n nodes, each node with one fragment, where n > k. 
The key property of erasure coding is that the original file can be 
reconstructed from any k fragments. Compared with replication, erasure 

coding uses an order of magnitude less bandwidth and storage to provide 
the same system availability[12]. 

 Regenerating Codes 
Upon failure of an individual node, a self-sustaining data 

storage network must necessarily possess the ability to regenerate (i.e., 
repair) a failed node. An obvious means to accomplish this is to permit 
the replacement node to connect to any nodes, download the entire 
message, and extract the data that was stored in the failed node. But 
downloading the entire units of data in order to recover the data stored in 
a single node that stores only a fraction of the entire message is wasteful, 

and raises the question as to whether there is a better option. Such an 
option is indeed available and provided by the concept of what is known 
as a regenerating code 
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Regenerating codes has been used for reducing repair traffic and 
storing the data redundantly in a distributed storage system( a collection 
of interconnected storage nodes). Regenerating codes are built on the 

concept of network coding [2][9]. Network codes designed specifically 
for distributed storage systems have the potential to provide dramatically 
higher storage efficiency for the same availability. One main challenge in 
the design of such codes is the exact repair problem: if a node storing 
encoded information fails, in order to maintain the same level of 
reliability we need to create encoded information at a new node. One of 
the main open problems in this emerging area has been the design of 
simple coding schemes that allow exact and low cost repair of failed 

nodes and have high data rates. 
In this paper, a proxy-based storage system has been proposed 

for providing fault-tolerant storage over multiple cloud storage providers, 
referred to as NCCloud. Our FMSR code implementation maintains 
double-fault tolerance and has the same storage cost as in traditional 
erasure coding schemes based on RAID-6 codes, but uses less repair 
traffic when recovering a single-cloud failure and somewhat more for 
recovering a multi cloud failure. In particular, we eliminate the need to 

perform encoding operations within storage nodes during repair, while 
preserving the benefits of network coding in reducing repair traffic. 

 
Summary of this paper using FMSR code is a s follows: 

1. In multi cloud storage, FMSR codes can save the repair 
cost by 25% compared to RAID 6.FMSR codes are 
designed in such a way that double fault tolerance is used. 
FMSR  code can save repair traffic cost by 25% and 

maintain the same amount of storage overhead as 
compared to RAID 6 codes. Note that FMSR codes can be 
deployed in a thin-cloud setting as they do not require 
storage nodes to perform encoding during repair, while still 
preserving the benefits of network coding in reducing 
repair traffic. Thus, FMSR codes can be readily deployed 
in today’s cloud storage services. 

2. Inordere to provide the implementation details of  how a 
file object can  be stored via FMSR codes, we propose a 

two-phase checking scheme, which ensures that double-
fault tolerance is maintained in the current and next round 
of repair. By performing two-phase checking, we ensure 
that double-fault tolerance is maintained after iterative 
rounds of repair of node failures. We conduct simulations 
to validate the importance of two-phase checking.•   

3. We conduct monetary cost analysis to show that FMSR 
codes effectively reduce the cost of repair when compared 

to traditional erasure codes, using the price models of 
today’s cloud storage providers. 

4. We conduct extensive experiments on both local cloud and 
commercial cloud settings. We show that our FMSR code 
implementation only adds a small encoding overhead, 
which can be easily masked by the file transfer time over 
the Internet. Thus, our  work validates the practicality of 
FMSR codes via NCCloud, and motivates further studies 

of realizing     regenerating codes in large-scale 
deployments 

 

2. BACKGROUND  
 
   2.1 Erasure codes 

Classical coding theory focuses on the tradeoff between  
redundancy and error tolerance. In terms of redundancy-reliability  

 
 
 
 
 
 
 
. 

tradeoff, the Maximum Distance Separable (MDS) codes are optimal. 

The most well-known family on erasure coding focus on other 

performance metrics. decoding complexity. Another line of research for 

erasure coding in storage applications is parity array codes; see, e.g., 

[16], [17], [18], [19]. The array codes are based solely on XOR 

operations and they are generally designed with the objective of low 

encoding, decoding, and update complexities. See also the tutorial by 

Plank [20] on erasure coding for storage applications of MDS erasure 

codes is Reed-Solomon codes.  

3. IMPORTANCE OF REPAIR IN CLOUD STORAGE 
In this section we will brief the importance of repair in a 

cloud storage, especially in a permanent failures. Earlier we come 
across the transient and permanent failures, now we will discuss about 
the difference between those types. A transient failure is expected to be 
short-term, such that the “failed” cloud will return to normal after some 

time and no outsourced data is lost. Transient failures are listed in the 
Table 1, where  the durations of such failures range from several 
minutes to several days. 

 
   Permanent failure.  A failure in which data will be lost permanently 
from the failed cloud refers to a permanent cloud node failure. So data 
cannot be recoverable in a permanent failure compared to a transient 
one. Although we expect that a permanent failure is very rare to happen, 

there are several situations where permanent failures are still possible: 
1. Loss and corruption of data: There are several cases of cloud 

services losing or corrupting customer data[10][4]. For 
example, in October 2009 a subsidiary of Microsoft, Danger 
Inc., lost the contacts, notes, photos, etc. of a large number of 
users of the Sidekick service [Sarno 2009]. The data was 
recovered several days later, but the users of Magnolia were 
not so lucky in February of the same year, when the company 
lost half a terabyte of data that it never managed to recover. 

2. Destructive attacks. To provide security guarantees for 
outsourced data, one solution is to have the client application 
encrypt the data before putting the data on the cloud. On the 
other hand, if the outsourced data is corrupted (e.g., by virus 
or malware), then even though the content of the data is 
encrypted and remains confidential to outsiders, the data itself 
is no longer useful. AFCOM [48] found that about 65 percent 
of data centers have no plan or procedure to deal with cyber-

criminals. 
3. Data center outages in disasters. AFCOM [48] found     that 

many data centers are ill-prepared for disasters[4].     For 
example, 50% of the respondents have no plans to repair 
damages after a disaster. It was reported[48] that the 
earthquake and tsunami in northeastern Japan in March 11, 
2011 knocked out several data centers there. 
 

Compared to transient failures, permanent failures will make 
the data no longer accessible.  
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TABLE 1 

Examples of transient failures in different cloud services. 

      

 

Cloud 

service 

Failure reason Duration Date 

Google 

Gmail 

Software bug [24] 4 days Feb 27-Mar 2,2011 

Google 

Search 

Programming error [38] 40 mins Jan 31,2009 

Amazon S3 Gossip protocol blowup 

[9] 

6-8 hours July 20,2008 

Microsoft 

Azure 

Malfunction in Windows 

Azure [36] 

22 hours Mar 13-14,2008  

   
 

4. FMSR CODE DESCRIPTION  

  
FMSR codes preserve the benefits of network coding as 

they minimize the repair bandwidth (e.g., the repair  and width 
saving compared to RAID-6 codes is up to 50% [22][21]). FMSR 
codes use uncoded repair without requiring encoding of surviving 
nodes during repair,and this can minimize disk reads as the 
amount of data read from disk is the same as that being 
transferred. FMSR codes are designed as non-systematic codes as 

they do not keep the original uncoded data as their systematic 
counterparts, but instead store only linear combinations of original 
data called parity chunks. Each round of repair regenerates new 
parity chunks for the new node and ensures that the fault tolerance 
level is maintained. A trade-off of FMSR codes is that the whole 
encoded file must be decoded first if parts of a file are accessed. 
Nevertheless, FMSR codes are suited to long-term archival 
applications, since data backups are rarely read and it is common 

to restore the whole file rather than file parts. 
 Because of above advantages of FMSR code we 
consider a distributed, multiple-cloud storage setting from a 
client’s perspective, where data is striped over multiple cloud 
providers. We propose a proxy-based design [1], [30] that 
interconnects multiple cloud repositories, as shown in Figure 1(a). 
The proxy serves as an interface between client applications and 
the clouds. If a cloud experiences a permanent failure, the proxy 

activates the repair operation, as shown in Figure 1(b). 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
From the above diagram, proxy reads the essential data pieces from 

other surviving clouds, reconstructs new data pieces, and writes these new 
pieces to a new cloud. Note that this repair operation does not involve direct 
interactions among the clouds. 

Now consider fault-tolerant storage based on a type of maximum 
distance separable (MDS) codes. Given a file object of size M , we divide it into 
equal-size native chunks, which are linearly combined to form code chunks. 
When an (n, k)-MDS code is used, the native/code chunks are then distributed 
over n (larger than k) nodes,each storing chunks of a total size M/k, such that 
the original file object may be reconstructed from the chunks contained in any k 

of the n nodes. Thus, it tolerates the failures of any n − k nodes. We call this 
fault tolerance feature the MDS property. The extra feature of FMSR codes is 
that reconstructing the chunks stored in a failed node can be achieved by 
downloading less data from the surviving nodes than reconstructing the whole 
file. his paper considers a multiple-cloud setting with two levels of reliability: 
fault tolerance and recovery. First, we assume that the multiple-cloud storage is 
double-fault tolerant (e.g., as in conventional RAID-6 codes) and provides data 
availability under the transient unavailability of at most two clouds. That is, we 

set k = n − 2. Thus, clients can always access their data as long as no more than 
two clouds experience transient failures (see examples in Table 1) or any 
possible connectivity problems. We expect that such a fault tolerance level 
suffices in practice.  

Second, we consider single-fault recovery in multiple-cloud storage, 
given that a permanent cloud failure is less frequent but possible. Our primary 
objective is to minimize the cost of storage repair (due to the migration of data 
over the clouds) for a permanent single-cloud failure. In this work, we focus on 

comparing two codes: traditional RAID-6 codes and our FMSR codes with 
double-fault tolerance3 . 
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1 (a)Normal operation       1(b) Repair operation 

 

    We define the repair traffic as the amount of outbound data 
being downloaded from the other surviving  clouds during the single-
cloud failure recovery. We seek to minimize the repair traffic for cost-
effective repair. Here, we do not consider the inbound traffic (i.e., the data 

being written to a cloud), as it is free of charge for many cloud providers . 
Suppose that we store a file of size M on four clouds, each viewed as a 
logical storage node. As we know in conventional RAID-6 codes, which 
is double-fault tolerant and the implementation is  based on the Reed-
Solomon code [23].  According to RAID 6 a file will be divided into two 
native chunks (i.e., A and B) of size M /2 each and add two code chunks 
formed by the linear combinations of the native chunks. Suppose now that 
Node 1 is down. Then the proxy must download the same number of 
chunks as the original file from  two other nodes (e.g., B and A + B from 

Nodes 2 and 3, respectively). It then reconstructs and stores the lost chunk 
A on the new node. The total storage size is 2M , while the repair traffic is 
M .  Regenerating codes have been proposed to reduce the repair traffic. 
One class of regenerating codes is called the exact minimum-storage 
regenerating (EMSR) codes[24]. 

 EMSR codes keep the same storage size as in RAID- 
6 codes, while having the storage nodes send encoded chunks to the proxy 
so as to reduce the repair traffic. In EMSR coding a file will be divided 

into 4 chunks, and allocate the native and code chunks. Suppose Node 1 is 
down. To repair it, each surviving node sends the XOR summation of the 
data chunks to the proxy, which then reconstructs the lost chunks. 

 We can see that in EMSR codes, the storage size is 2M (same 
as RAID-6 codes), while the repair traffic is 0.75M , which is 25% of 
saving (compared with RAID-6 codes).  
 We now propose the double-fault tolerant implementation of 
FMSR codes as shown in Figure 2(a). We divide the file into four native 

chunks, and construct eight distinct code chunks P1 , · · · , P8 formed by 
different linear combinations of the native chunks. Each code chunk has 
the same size M /4 as a native chunk. Any two nodes can be used to 
recover the original four native chunks. Suppose Node 1 is down. The 
proxy collects one code chunk from each surviving node, though 2 nodes 
are enough to reconstruct the failed node, and downloads three code 
chunks of size M /4 each. Then the proxy regenerates two code chunks P1 
and P2 formed by different linear combinations of the three code chunks 

as shown in the fig 2(a).  
 

    Suppose 2 nodes fail at a time as in fig 2(b), in which 
from the remaining 2 surviving nodes any one failed node will be 
recovered and using that recovered node along with node 3 & 4  another 

failed node can be recovered as shown in the fig2(b) &(c) . Note that P1 
and P2 are still linear combinations of the native chunks. The proxy then 
writes P1 and P2 to the new node. In FMSR codes, the storage size is 2M 
(as in RAID-6 codes), yet the repair traffic is 0.75M , which is the same 
as in EMSR codes. A key property of our FMSR codes is that nodes do 
not perform encoding during repair. 

To generalize double-fault tolerant FMSR codes for n storage 
nodes, we divide a file of size M into 2(n − 2) native chunks, and use 

them to generate 2n code chunks M Then each node will store two code 
chunks of size 2(n−2) Mn each. Thus, the total storage size is n−2 . To 
repair a failed node, we download one chunk from each of the other n−1 
for one node failure and n-2 for 2 node failures. so the repair traffic is M 
(n−1) . In contrast, for 2(n−2) MnRAID-6 codes, the total storage size is 
also n−2 , while the repair traffic is M . When n is large, FMSR codes can 
save the repair traffic by close to 50%. 
  Note that FMSR codes are non-systematic, as they keep only code 
chunks but not native chunks. To access a single chunk of a file, we need 

to download and decode the entire file for that particular chunk. This is 
opposed to systematic codes (as in traditional RAID storage), 
in which native chunks are kept. Nevertheless, FMSR codes are 
acceptable for long-term archival applications, where the read frequency 
is typically low. Also, to restore backups, it is natural to retrieve the entire 
file rather than a particular chunk [25]. 

 
5.IMPLEMENTATION 
The proposed FMSR code for multiple cloud storage has three operations   
on a particular file object: 
(1) file upload; 
(2) file download; 
(3) repair. 
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        2b) FMSR codes for two node failures 
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   Each cloud repository is viewed as a logical storage node. The 
implementation assumes a thin-cloud interface , such that the storage 

nodes (i.e., cloud repositories) only need to support basic read/write 
operations. Thus, we expect that our FMSR code implementation is 
compatible with today’s cloud storage services. 
    One property of FMSR codes is that we do not require lost 
chunks to be exactly reconstructed, but instead in each repair, we 
regenerate code chunks that are not necessarily identical to those 
originally stored in the failed node, as long as the MDS property holds. 
We propose a two-phase checking scheme, which ensures that the code 

chunks on all nodes always satisfy the MDS property, and hence data 
availability, even after iterative repairs. In this section, we analyze the 
importance of the two-phase checking scheme. 
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We first check if the new set of chunks in all storage nodes 

satisfies the MDS property after the rth repair. In addition, we also check 
if another new set of chunks in all storage nodes still satisfies the MDS 
property after the (r + 1)th repair, should another single permanent node 
failure occur (we call this the repair MDS (rMDS) property). We now 
describe the rth repair as follows: 
 Step 1: From the above explanation we know that any 2 nodes are enough 
to reconstruct a failed node. let n be the number of nodes and m be the 
number of failed nodes(for example if n=6 and m<=n-2). Download the 

encoding matrix from a surviving node. Recall that the encoding matrix 
EM specifies the ECVs for constructing all code chunks via linear 
combinations of native chunks. We use these ECVs for our later two-
phase checking. Since we embed EM in a metadata object that is 
replicated, we can simply download the  metadata object from one of the 
surviving nodes. 

Step 2: Select one ECV from each of the surviving nodes. Each 
ECV in EM corresponds to a code chunk. We pick one ECV from each of 

the surviving nodes. We call these ECVs to be ECVi1 , ECVi2 , · · ·, 
ECVin−1 .  
   Step 3: Generate a repair matrix. Construct a repair matrix RM = [γi,j ], 
where each element γi,j (where i = 1, . . . , n − k and j = 1, . . . , n − 1) is 
randomly selected in GF(28 ). Note that the idea of generating a random 
matrix for reliable storage is consistent with that in [27]. 
   Step 4: Compute the ECVs for the new code chunks and reproduce a 
new encoding matrix. We multiply RM with the ECVs selected in Step 2 
to construct n−k new ECVs,  n−1 denoted by ECVi = j=1 γi,j ECVij for i 

= 1, 2, · · · , n−k. Then we reproduce a new encoding matrix, denoted by 
EM , which is formed by substituting the ECVs of EM of the failed node 
with the corresponding new ECVs. 
   Step 5: Given EM , check if both the MDS and rMDS properties are 
satisfied. Intuitively, we verify the MDS property by enumerating all n 
subsets of k nodes to seek if each of their corresponding encoding 
matrices forms a full rank. For the rMDS property, we check that for any 
possible node failure (one out of n nodes), we can collect one out of n−k 

chunks from each of the other n−1 surviving nodes and reconstruct the 
chunks in the new node, such that the MDS property is maintained. The 
number of checks performed for the rMDS property is at most n(n − 
k)n−1 n . If n is small, then the enumeration complexities for both MDS 
and rMDS properties are manageable. If either one phase fails, then we 
return to Step 2 and repeat. We emphasize that Steps 1 to 5 only deal with 
the ECVs, so their overhead does not depend on the chunk size. 
   Step 6: Download the actual chunk data and regenerate new chunk data. 

If the two-phase checking in Step 5 succeeds, then we proceed to 
download the n − 1 chunks that correspond to the selected ECVs in Step 2 
from the n − 1 surviving storage nodes to NCCloud. Also, using the new 
ECVs computed in Step 4, we regenerate new chunks and upload them 
from NCCloud to a new node. 
   Remark: We can reduce the complexity of two-phase checking with the 
proposed FMSR code construction in our recent work [28]. The proposed 
construction specifies the ECVs to be selected in Step 2 deterministically, 

and tests their correctness (i.e., satisfying both MDS and rMDS 
properties) by checking against a set of inequalities in Step 5. This reduces 
the complexity of each iteration as well as the number of iterations (i.e., 
number of times that Steps 2-5 are repeated) in generating a valid EM . 
Our current implementation of NCCloud includes the proposed 
construction.  
 

4.1 Uploading a file in a multi cloud environment 
First thing is, divide a  file F into k(n − k) equal- size 

native chunks, denoted by (Fi )i=1,2,···,k(n−k) . then encode 
these k(n − k) native chunks into n(n − k) code chunks, denoted 
by (Pi )i=1,2,···,n(n−k) . Each Pi is formed by a linear 

combination of the k(n − k) native chunks. Specifically, we let 
EM = [αi,j ] be an n(n − k) × k(n−k) encoding matrix for some 
coefficients αi,j (where i = 1, . . . , n(n − k) and j = 1, . . . , k(n − 
k)) in the Galois  field GF(28 ). We call a row vector of EM an 
encoding coefficient vector (ECV), which contains k(n − k) 
elements. We let ECVi denote the ith row vector of EM. We 
compute each Pi by the product of ECVi and all the native 
k(n−k) chunks F1 , F2 , · · · , Fk(n−k) , i.e., Pi = j=1 αi,j Fj for i 
= 1, 2, · · · , n(n − k), where all arithmetic operations are 

performed over GF(28 ). The code chunks are then evenly 
stored in the n storage nodes, each having (n−k) chunks. Also, 
we store the whole EM in a metadata object that is then 
replicated to all storage nodes. There are many ways of 
constructing EM, as long as it passes our two-phase checking . 
Note that the implementation details of the arithmetic 
operations in Galois Fields are extensively discussed in [22]. 
4.2 File Download 

To download a file, we first download the 
corresponding metadata object that contains the ECVs. Then 
we select any k of the n storage nodes, and download the k(n − 
k) code chunks from the k nodes. The ECVs of the k(n − k) 
code chunks can form a k(n−k)×k(n−k) square matrix. If the 
MDS property is maintained, then by definition, the inverse of 
the square matrix must exist. Thus, we multiply the inverse of 
the square matrix with the code chunks and obtain the original 

k(n − k) native chunks. 
The idea is that we treat FMSR codes as standard 

Reed- Solomon codes, and our technique of creating an inverse 
matrix to decode the original data has been described in the 
tutorial [26]. 
4.3 REPAIR 

After upload and download a file the last one is how 
to repair a permanent multi node failure. Given that FMSR 

codes regenerates different chunks in each repair, one challenge 
is to ensure that the MDS property still holds even after 
iterative repairs. This is in contrast to regenerating the exact  
lost chunks as in RAID-6, which guarantees the invariance of 
the stored chunks. Here, we propose a two-phase checking 
heuristic as follows. Suppose that the (r − 1)th repair is 
successful, and we now consider how to operate the rth repair 
for a permanent multi node failure (where r ≥ 1). 

. 
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n  n-1   n-2 

 

 

Fig 3.Markov model for double fault tolerant codes 

 

  

 

Some studies (e.g., [4]) address the security issues for 

regenerating-coded data, while the security aspect of FMSR codes is 
addressed in our prior work [30].  

 
7.CONCLUSIONS 

In this paper we proposed a multi node failure recovery using 
network coding(FMSR) method. We used a proxy-based, multiple-cloud 
storage system that practically addresses the reliability of today’s cloud 

backup storage. This paper not only provides fault tolerance in storage, 
but also allows cost-effective repair when a cloud permanently fails. 
Recovery from multimode failure takes place only if the following 
condition is met: 
M=N-2 ( N:number of nodes & M:number of failure nodes) . 

we proposed theoretically functional minimum storage 
regenerating (FMSR) codes, which regenerates new parity chunks 
during repair subject to the required degree of data redundancy. Our 

FMSR code implementation eliminates the encoding requirement of 
storage nodes (or cloud) during repair, while ensuring that the new set of 
stored chunks after each round of repair preserves the required fault 
tolerance. This paper shows the effectiveness of FMSR codes in the 
cloud backup usage, in terms of monetary costs and response times.  

 

8. FUTURE WORK 
FMSR code implementation has been proved in the recent 

papers[31] along with its correctness. Now we point out some of the 
issues of the existing design of FMSR codes, and we make them as 
future work. 
 While double-fault tolerance is the default setting of today’s 
enterprise storage systems (e.g., 3-way replication in GFS [32]), it is 
unclear how to generalize FMSR codes for different (n, k) values. FMSR 
code used in[4] tells us about single node failure recovery. In this paper 
we discussed about multimode failure where M=N-2, but it is interesting 
to study if all the nodes in a cloud fail simultaneously. This can be posed 

as a future work . while single-node failures are the most common 
failure patterns in practical cloud storage systems [31], it is interesting to 
study how to generalize FMSR codes to support efficient repairs of 
concurrent node failures. 
 In FMSR codes, we always download the same amount of 
original data by connecting to any k nodes . while in traditional RAID-6 
codes, the original amount of data is retrieved to recover the lost data. 
Thus, FMSR codes and traditional RAID-6 codes retrieve the same 

amount of data in degraded reads, while FMSR codes have higher 
computational overhead in decoding.  
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MTTDL is solved via the Markov model. Figure 3 shows the 
Markov model for double-fault tolerant codes (i.e., k = n − 2), in which 
state i (where i = 0, 1, 2, 3) denotes the number of failed nodes in a 
storage system. State 3 means that there are more than  two failed nodes 
and the data is permanently lost. We compute MTTDL as the expected 
time to move from state 0 (i.e., all nodes are  normal) to state 3. 

 

6. R ELATED WORK 

 
Multiple-cloud storage. There are several systems proposed 

for multiple-cloud storage. NCCloud[4] provides node recovery for 
single node failure. NCCloud excludes the failed cloud in repair, Where 
as HAIL [10] provides integrity and availability guarantees for stored 
data. RACS [1] uses erasure coding to mitigate vendor lock-ins when 
switching cloud vendors. It retrieves data from the cloud that is about to 
fail and moves the data to the new cloud. Unlike RACS, DEPSKY [10] 

addresses Byzantine fault tolerance by combining encryption and 
erasure coding for stored data. All the above systems are built on erasure 
codes to provide fault tolerance, in this paper we are proposing   multi 
node failure recovery using FMSR codes with an emphasis on both fault 
tolerance and storage repair. 

Minimizing I/Os. Several studies propose efficient single-node 
failure recovery schemes that minimize the amount of data read (or I/Os) 
for XOR-based erasure codes. For example optimal recovery for specific 

RAID-6 codes reduces the amount of data read by up to around 25% 
(compared to conventional repair that downloads the amount of original 
data) for any number of nodes. Note that our FMSR codes can achieve 
25% saving when the number of nodes is four, and up to 50% saving if 
the number of nodes increases. Authors of [35] propose an enumeration-
based approach to search for an optimal recovery solution for arbitrary 
XOR-based erasure codes. Efficient recovery is recently addressed in 
commercial cloud storage systems. For example, new constructions of 

non-MDS erasure codes designed for efficient recovery are proposed for 
Azure [29]. The codes used in [31], [53] trade storage overhead for 
performance, and are mainly designed for data-intensive computing. Our 
work targets the cloud backup applications. 

Regenerating codes will minimize the network traffic using 
network coding and it also reduces the repair traffic among storage 
nodes. Some studies[4] addresses the security issues for regenerating 
codes in case of single failure recovery. Whereas we proposed  in this 
paper on multinode failure recovery(,which accounts for the majority of 

failures in cloud storage systems [31].  
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