
IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 92

Functional Minimum Storage Regenerating Codes For

Multi-Cloud Failure

Anitha p
Assistant professor,Dept of ISE,JSSATE,BANGALORE

1. INTRODUCTION

Abstract— This paper reduces the network repair traffic and recovery from multiple node failures in a cloud storage environment.

Suppose if a cloud suffers from permanent failure and loses all its data by more than one node, then we need to regenerate the lost data

with the help of the other neighboring clouds. We design a proxy based storage system for fault tolerant multiple cloud storage called

NC cloud, which achieves reduction in repair traffic for a permanent multi cloud failure. Functional minimum storage regenerating

[FMSR] codes is used for regenerating data in multicloud failure. we also prove that FMSR codes reduces repair traffic and incur less

monitory cost during data transfer than Erasure [RAID-6] codes and EMSR [exact minimum storage regenerating]codes.

.
Index Terms—multicloud, regenerating codes, repair traffic, fault tolerance, recovery.

Cloud storage denotes a family of increasingly popular on-
line services for archiving, backup, and even primary storage of
files.[11] Cloud-storage providers offer users clean and simple file
system interfaces and also raises concerns such as having single or
multi point of failure and vendor lock- ins[7][1][4]. A possible
solution is to distribute data across different cloud Providers and by
exploiting the diversity of multiple clouds as suggested in
[10][11][1].Using this we can improve the fault tolerance of cloud

storage.
 Cloud storage denotes a family of increasingly popular on-line
services for archiving, backup, and even primary storage of files.[11]
Cloud-storage providers offer users clean and simple file-system
interfaces and also raises concerns such as having single or multi
point of failure and vendor lock- ins[7][1][4]. A possible solution is to
distribute data across different cloud providers and by exploiting the
diversity of multiple clouds as suggested in [10][11][4].Using this we

can improve the fault tolerance of cloud storage.
From disk arrays through clouds to archival systems,

storage systems must tolerate failures and prevent data loss. There are

2 types of cloud failures: Transient and permanent failures. Erasure

coding provides the fundamental technology for storage systems to

add redundancy and tolerate short-term transient failures or

foreseeable permanent failures[1].Amazon S3 [1] is a well known

example for a permanent failure during 2011[12].

 P.Anitha, working for JSS Academy of technical education as an Asst Prof

 in the Dept of ISE.(panitha_80@rediffmail.com)

 So this paper focuses on unexpected permanent cloud failures.

 When a permanent failure of a cloud occurs, it is necessary to activate

repair in order to maintain redundancy of data and fault tolerance. Since
data has been striped across different cloud providers, the repair
operation recovers data from existing surviving clouds over the network
and restores the lost data in a new cloud. Moving an enormous amount of
data across clouds can introduce significant monetary costs. So it is
important to reduce the network repair traffic (i.e., the amount of data
being transferred over the network during repair), storing data
redundantly and hence the monetary costs due to data migration.

 Redundancy can be achieved by two common

methods , replication and erasure coding. Replication is the simplest
redundancy scheme, where c identical copies of a file are kept at c nodes,
each node with one copy. The other is an (n, k) Maximum-Distance
Separable (MDS) code, where each file of size M bytes is divided into k
fragments of size M/k bytes and the k fragments are encoded into n
fragments stored at n nodes, each node with one fragment, where n > k.
The key property of erasure coding is that the original file can be
reconstructed from any k fragments. Compared with replication, erasure

coding uses an order of magnitude less bandwidth and storage to provide
the same system availability[12].

 Regenerating Codes
Upon failure of an individual node, a self-sustaining data

storage network must necessarily possess the ability to regenerate (i.e.,
repair) a failed node. An obvious means to accomplish this is to permit
the replacement node to connect to any nodes, download the entire
message, and extract the data that was stored in the failed node. But
downloading the entire units of data in order to recover the data stored in
a single node that stores only a fraction of the entire message is wasteful,

and raises the question as to whether there is a better option. Such an
option is indeed available and provided by the concept of what is known
as a regenerating code

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 93

Regenerating codes has been used for reducing repair traffic and
storing the data redundantly in a distributed storage system(a collection
of interconnected storage nodes). Regenerating codes are built on the

concept of network coding [2][9]. Network codes designed specifically
for distributed storage systems have the potential to provide dramatically
higher storage efficiency for the same availability. One main challenge in
the design of such codes is the exact repair problem: if a node storing
encoded information fails, in order to maintain the same level of
reliability we need to create encoded information at a new node. One of
the main open problems in this emerging area has been the design of
simple coding schemes that allow exact and low cost repair of failed

nodes and have high data rates.
In this paper, a proxy-based storage system has been proposed

for providing fault-tolerant storage over multiple cloud storage providers,
referred to as NCCloud. Our FMSR code implementation maintains
double-fault tolerance and has the same storage cost as in traditional
erasure coding schemes based on RAID-6 codes, but uses less repair
traffic when recovering a single-cloud failure and somewhat more for
recovering a multi cloud failure. In particular, we eliminate the need to

perform encoding operations within storage nodes during repair, while
preserving the benefits of network coding in reducing repair traffic.

Summary of this paper using FMSR code is a s follows:

1. In multi cloud storage, FMSR codes can save the repair
cost by 25% compared to RAID 6.FMSR codes are
designed in such a way that double fault tolerance is used.
FMSR code can save repair traffic cost by 25% and

maintain the same amount of storage overhead as
compared to RAID 6 codes. Note that FMSR codes can be
deployed in a thin-cloud setting as they do not require
storage nodes to perform encoding during repair, while still
preserving the benefits of network coding in reducing
repair traffic. Thus, FMSR codes can be readily deployed
in today’s cloud storage services.

2. Inordere to provide the implementation details of how a
file object can be stored via FMSR codes, we propose a

two-phase checking scheme, which ensures that double-
fault tolerance is maintained in the current and next round
of repair. By performing two-phase checking, we ensure
that double-fault tolerance is maintained after iterative
rounds of repair of node failures. We conduct simulations
to validate the importance of two-phase checking.•

3. We conduct monetary cost analysis to show that FMSR
codes effectively reduce the cost of repair when compared

to traditional erasure codes, using the price models of
today’s cloud storage providers.

4. We conduct extensive experiments on both local cloud and
commercial cloud settings. We show that our FMSR code
implementation only adds a small encoding overhead,
which can be easily masked by the file transfer time over
the Internet. Thus, our work validates the practicality of
FMSR codes via NCCloud, and motivates further studies

of realizing regenerating codes in large-scale
deployments

2. BACKGROUND

 2.1 Erasure codes

Classical coding theory focuses on the tradeoff between
redundancy and error tolerance. In terms of redundancy-reliability

.

tradeoff, the Maximum Distance Separable (MDS) codes are optimal.

The most well-known family on erasure coding focus on other

performance metrics. decoding complexity. Another line of research for

erasure coding in storage applications is parity array codes; see, e.g.,

[16], [17], [18], [19]. The array codes are based solely on XOR

operations and they are generally designed with the objective of low

encoding, decoding, and update complexities. See also the tutorial by

Plank [20] on erasure coding for storage applications of MDS erasure

codes is Reed-Solomon codes.

3. IMPORTANCE OF REPAIR IN CLOUD STORAGE
In this section we will brief the importance of repair in a

cloud storage, especially in a permanent failures. Earlier we come
across the transient and permanent failures, now we will discuss about
the difference between those types. A transient failure is expected to be
short-term, such that the “failed” cloud will return to normal after some

time and no outsourced data is lost. Transient failures are listed in the
Table 1, where the durations of such failures range from several
minutes to several days.

 Permanent failure. A failure in which data will be lost permanently
from the failed cloud refers to a permanent cloud node failure. So data
cannot be recoverable in a permanent failure compared to a transient
one. Although we expect that a permanent failure is very rare to happen,

there are several situations where permanent failures are still possible:
1. Loss and corruption of data: There are several cases of cloud

services losing or corrupting customer data[10][4]. For
example, in October 2009 a subsidiary of Microsoft, Danger
Inc., lost the contacts, notes, photos, etc. of a large number of
users of the Sidekick service [Sarno 2009]. The data was
recovered several days later, but the users of Magnolia were
not so lucky in February of the same year, when the company
lost half a terabyte of data that it never managed to recover.

2. Destructive attacks. To provide security guarantees for
outsourced data, one solution is to have the client application
encrypt the data before putting the data on the cloud. On the
other hand, if the outsourced data is corrupted (e.g., by virus
or malware), then even though the content of the data is
encrypted and remains confidential to outsiders, the data itself
is no longer useful. AFCOM [48] found that about 65 percent
of data centers have no plan or procedure to deal with cyber-

criminals.
3. Data center outages in disasters. AFCOM [48] found that

many data centers are ill-prepared for disasters[4]. For
example, 50% of the respondents have no plans to repair
damages after a disaster. It was reported[48] that the
earthquake and tsunami in northeastern Japan in March 11,
2011 knocked out several data centers there.

Compared to transient failures, permanent failures will make
the data no longer accessible.

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 94

TABLE 1

Examples of transient failures in different cloud services.

Cloud

service

Failure reason Duration Date

Google

Gmail

Software bug [24] 4 days Feb 27-Mar 2,2011

Google

Search

Programming error [38] 40 mins Jan 31,2009

Amazon S3 Gossip protocol blowup

[9]

6-8 hours July 20,2008

Microsoft

Azure

Malfunction in Windows

Azure [36]

22 hours Mar 13-14,2008

4. FMSR CODE DESCRIPTION

FMSR codes preserve the benefits of network coding as

they minimize the repair bandwidth (e.g., the repair and width
saving compared to RAID-6 codes is up to 50% [22][21]). FMSR
codes use uncoded repair without requiring encoding of surviving
nodes during repair,and this can minimize disk reads as the
amount of data read from disk is the same as that being
transferred. FMSR codes are designed as non-systematic codes as

they do not keep the original uncoded data as their systematic
counterparts, but instead store only linear combinations of original
data called parity chunks. Each round of repair regenerates new
parity chunks for the new node and ensures that the fault tolerance
level is maintained. A trade-off of FMSR codes is that the whole
encoded file must be decoded first if parts of a file are accessed.
Nevertheless, FMSR codes are suited to long-term archival
applications, since data backups are rarely read and it is common

to restore the whole file rather than file parts.
 Because of above advantages of FMSR code we
consider a distributed, multiple-cloud storage setting from a
client’s perspective, where data is striped over multiple cloud
providers. We propose a proxy-based design [1], [30] that
interconnects multiple cloud repositories, as shown in Figure 1(a).
The proxy serves as an interface between client applications and
the clouds. If a cloud experiences a permanent failure, the proxy

activates the repair operation, as shown in Figure 1(b).

From the above diagram, proxy reads the essential data pieces from

other surviving clouds, reconstructs new data pieces, and writes these new
pieces to a new cloud. Note that this repair operation does not involve direct
interactions among the clouds.

Now consider fault-tolerant storage based on a type of maximum
distance separable (MDS) codes. Given a file object of size M , we divide it into
equal-size native chunks, which are linearly combined to form code chunks.
When an (n, k)-MDS code is used, the native/code chunks are then distributed
over n (larger than k) nodes,each storing chunks of a total size M/k, such that
the original file object may be reconstructed from the chunks contained in any k

of the n nodes. Thus, it tolerates the failures of any n − k nodes. We call this
fault tolerance feature the MDS property. The extra feature of FMSR codes is
that reconstructing the chunks stored in a failed node can be achieved by
downloading less data from the surviving nodes than reconstructing the whole
file. his paper considers a multiple-cloud setting with two levels of reliability:
fault tolerance and recovery. First, we assume that the multiple-cloud storage is
double-fault tolerant (e.g., as in conventional RAID-6 codes) and provides data
availability under the transient unavailability of at most two clouds. That is, we

set k = n − 2. Thus, clients can always access their data as long as no more than
two clouds experience transient failures (see examples in Table 1) or any
possible connectivity problems. We expect that such a fault tolerance level
suffices in practice.

Second, we consider single-fault recovery in multiple-cloud storage,
given that a permanent cloud failure is less frequent but possible. Our primary
objective is to minimize the cost of storage repair (due to the migration of data
over the clouds) for a permanent single-cloud failure. In this work, we focus on

comparing two codes: traditional RAID-6 codes and our FMSR codes with
double-fault tolerance3 .

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 95

1 (a)Normal operation 1(b) Repair operation

 We define the repair traffic as the amount of outbound data
being downloaded from the other surviving clouds during the single-
cloud failure recovery. We seek to minimize the repair traffic for cost-
effective repair. Here, we do not consider the inbound traffic (i.e., the data

being written to a cloud), as it is free of charge for many cloud providers .
Suppose that we store a file of size M on four clouds, each viewed as a
logical storage node. As we know in conventional RAID-6 codes, which
is double-fault tolerant and the implementation is based on the Reed-
Solomon code [23]. According to RAID 6 a file will be divided into two
native chunks (i.e., A and B) of size M /2 each and add two code chunks
formed by the linear combinations of the native chunks. Suppose now that
Node 1 is down. Then the proxy must download the same number of
chunks as the original file from two other nodes (e.g., B and A + B from

Nodes 2 and 3, respectively). It then reconstructs and stores the lost chunk
A on the new node. The total storage size is 2M , while the repair traffic is
M . Regenerating codes have been proposed to reduce the repair traffic.
One class of regenerating codes is called the exact minimum-storage
regenerating (EMSR) codes[24].

 EMSR codes keep the same storage size as in RAID-
6 codes, while having the storage nodes send encoded chunks to the proxy
so as to reduce the repair traffic. In EMSR coding a file will be divided

into 4 chunks, and allocate the native and code chunks. Suppose Node 1 is
down. To repair it, each surviving node sends the XOR summation of the
data chunks to the proxy, which then reconstructs the lost chunks.

 We can see that in EMSR codes, the storage size is 2M (same
as RAID-6 codes), while the repair traffic is 0.75M , which is 25% of
saving (compared with RAID-6 codes).
 We now propose the double-fault tolerant implementation of
FMSR codes as shown in Figure 2(a). We divide the file into four native

chunks, and construct eight distinct code chunks P1 , · · · , P8 formed by
different linear combinations of the native chunks. Each code chunk has
the same size M /4 as a native chunk. Any two nodes can be used to
recover the original four native chunks. Suppose Node 1 is down. The
proxy collects one code chunk from each surviving node, though 2 nodes
are enough to reconstruct the failed node, and downloads three code
chunks of size M /4 each. Then the proxy regenerates two code chunks P1
and P2 formed by different linear combinations of the three code chunks

as shown in the fig 2(a).

 Suppose 2 nodes fail at a time as in fig 2(b), in which
from the remaining 2 surviving nodes any one failed node will be
recovered and using that recovered node along with node 3 & 4 another

failed node can be recovered as shown in the fig2(b) &(c) . Note that P1
and P2 are still linear combinations of the native chunks. The proxy then
writes P1 and P2 to the new node. In FMSR codes, the storage size is 2M
(as in RAID-6 codes), yet the repair traffic is 0.75M , which is the same
as in EMSR codes. A key property of our FMSR codes is that nodes do
not perform encoding during repair.

To generalize double-fault tolerant FMSR codes for n storage
nodes, we divide a file of size M into 2(n − 2) native chunks, and use

them to generate 2n code chunks M Then each node will store two code
chunks of size 2(n−2) Mn each. Thus, the total storage size is n−2 . To
repair a failed node, we download one chunk from each of the other n−1
for one node failure and n-2 for 2 node failures. so the repair traffic is M
(n−1) . In contrast, for 2(n−2) MnRAID-6 codes, the total storage size is
also n−2 , while the repair traffic is M . When n is large, FMSR codes can
save the repair traffic by close to 50%.
 Note that FMSR codes are non-systematic, as they keep only code
chunks but not native chunks. To access a single chunk of a file, we need

to download and decode the entire file for that particular chunk. This is
opposed to systematic codes (as in traditional RAID storage),
in which native chunks are kept. Nevertheless, FMSR codes are
acceptable for long-term archival applications, where the read frequency
is typically low. Also, to restore backups, it is natural to retrieve the entire
file rather than a particular chunk [25].

5.IMPLEMENTATION
The proposed FMSR code for multiple cloud storage has three operations
on a particular file object:
(1) file upload;
(2) file download;
(3) repair.

cloud1

Cloud2

cloud3

cloud4

proxy

proxy

cloud1

Cloud3

Cloud4

Cloud2

Cloud5

 P1 &p2

 P1 &p2

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 96

Node 1

Node2

Node3

 Node4

 2b) FMSR codes for two node failures

Node 1

Node2

Node3

Node 4 New node(Node1)

2 a) FMSR codes for one node failure 2c) Retrieval of second node

 Each cloud repository is viewed as a logical storage node. The
implementation assumes a thin-cloud interface , such that the storage

nodes (i.e., cloud repositories) only need to support basic read/write
operations. Thus, we expect that our FMSR code implementation is
compatible with today’s cloud storage services.
 One property of FMSR codes is that we do not require lost
chunks to be exactly reconstructed, but instead in each repair, we
regenerate code chunks that are not necessarily identical to those
originally stored in the failed node, as long as the MDS property holds.
We propose a two-phase checking scheme, which ensures that the code

chunks on all nodes always satisfy the MDS property, and hence data
availability, even after iterative repairs. In this section, we analyze the
importance of the two-phase checking scheme.

A

 B

 C

 D

 A

 B

 C

 D

 P1 &p2

 P3 &p4

 P5 &p6

 P7&p8

 P3

 P5

 P7

ppppp

p8

P1 ‘& p2’

 P1 &p2

 P5 &p6

 P3 &p4

 P7 &p8

P5|p6

P7|p8

Node 1or&

2 retrieved

Retrieved
Node

node

Node
Node 3

Node 4

Another node

retrieved

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 97

We first check if the new set of chunks in all storage nodes

satisfies the MDS property after the rth repair. In addition, we also check
if another new set of chunks in all storage nodes still satisfies the MDS
property after the (r + 1)th repair, should another single permanent node
failure occur (we call this the repair MDS (rMDS) property). We now
describe the rth repair as follows:
 Step 1: From the above explanation we know that any 2 nodes are enough
to reconstruct a failed node. let n be the number of nodes and m be the
number of failed nodes(for example if n=6 and m<=n-2). Download the

encoding matrix from a surviving node. Recall that the encoding matrix
EM specifies the ECVs for constructing all code chunks via linear
combinations of native chunks. We use these ECVs for our later two-
phase checking. Since we embed EM in a metadata object that is
replicated, we can simply download the metadata object from one of the
surviving nodes.

Step 2: Select one ECV from each of the surviving nodes. Each
ECV in EM corresponds to a code chunk. We pick one ECV from each of

the surviving nodes. We call these ECVs to be ECVi1 , ECVi2 , · · ·,
ECVin−1 .
 Step 3: Generate a repair matrix. Construct a repair matrix RM = [γi,j],
where each element γi,j (where i = 1, . . . , n − k and j = 1, . . . , n − 1) is
randomly selected in GF(28). Note that the idea of generating a random
matrix for reliable storage is consistent with that in [27].
 Step 4: Compute the ECVs for the new code chunks and reproduce a
new encoding matrix. We multiply RM with the ECVs selected in Step 2
to construct n−k new ECVs, n−1 denoted by ECVi = j=1 γi,j ECVij for i

= 1, 2, · · · , n−k. Then we reproduce a new encoding matrix, denoted by
EM , which is formed by substituting the ECVs of EM of the failed node
with the corresponding new ECVs.
 Step 5: Given EM , check if both the MDS and rMDS properties are
satisfied. Intuitively, we verify the MDS property by enumerating all n
subsets of k nodes to seek if each of their corresponding encoding
matrices forms a full rank. For the rMDS property, we check that for any
possible node failure (one out of n nodes), we can collect one out of n−k

chunks from each of the other n−1 surviving nodes and reconstruct the
chunks in the new node, such that the MDS property is maintained. The
number of checks performed for the rMDS property is at most n(n −
k)n−1 n . If n is small, then the enumeration complexities for both MDS
and rMDS properties are manageable. If either one phase fails, then we
return to Step 2 and repeat. We emphasize that Steps 1 to 5 only deal with
the ECVs, so their overhead does not depend on the chunk size.
 Step 6: Download the actual chunk data and regenerate new chunk data.

If the two-phase checking in Step 5 succeeds, then we proceed to
download the n − 1 chunks that correspond to the selected ECVs in Step 2
from the n − 1 surviving storage nodes to NCCloud. Also, using the new
ECVs computed in Step 4, we regenerate new chunks and upload them
from NCCloud to a new node.
 Remark: We can reduce the complexity of two-phase checking with the
proposed FMSR code construction in our recent work [28]. The proposed
construction specifies the ECVs to be selected in Step 2 deterministically,

and tests their correctness (i.e., satisfying both MDS and rMDS
properties) by checking against a set of inequalities in Step 5. This reduces
the complexity of each iteration as well as the number of iterations (i.e.,
number of times that Steps 2-5 are repeated) in generating a valid EM .
Our current implementation of NCCloud includes the proposed
construction.

4.1 Uploading a file in a multi cloud environment
First thing is, divide a file F into k(n − k) equal- size

native chunks, denoted by (Fi)i=1,2,···,k(n−k) . then encode
these k(n − k) native chunks into n(n − k) code chunks, denoted
by (Pi)i=1,2,···,n(n−k) . Each Pi is formed by a linear

combination of the k(n − k) native chunks. Specifically, we let
EM = [αi,j] be an n(n − k) × k(n−k) encoding matrix for some
coefficients αi,j (where i = 1, . . . , n(n − k) and j = 1, . . . , k(n −
k)) in the Galois field GF(28). We call a row vector of EM an
encoding coefficient vector (ECV), which contains k(n − k)
elements. We let ECVi denote the ith row vector of EM. We
compute each Pi by the product of ECVi and all the native
k(n−k) chunks F1 , F2 , · · · , Fk(n−k) , i.e., Pi = j=1 αi,j Fj for i
= 1, 2, · · · , n(n − k), where all arithmetic operations are

performed over GF(28). The code chunks are then evenly
stored in the n storage nodes, each having (n−k) chunks. Also,
we store the whole EM in a metadata object that is then
replicated to all storage nodes. There are many ways of
constructing EM, as long as it passes our two-phase checking .
Note that the implementation details of the arithmetic
operations in Galois Fields are extensively discussed in [22].
4.2 File Download

To download a file, we first download the
corresponding metadata object that contains the ECVs. Then
we select any k of the n storage nodes, and download the k(n −
k) code chunks from the k nodes. The ECVs of the k(n − k)
code chunks can form a k(n−k)×k(n−k) square matrix. If the
MDS property is maintained, then by definition, the inverse of
the square matrix must exist. Thus, we multiply the inverse of
the square matrix with the code chunks and obtain the original

k(n − k) native chunks.
The idea is that we treat FMSR codes as standard

Reed- Solomon codes, and our technique of creating an inverse
matrix to decode the original data has been described in the
tutorial [26].
4.3 REPAIR

After upload and download a file the last one is how
to repair a permanent multi node failure. Given that FMSR

codes regenerates different chunks in each repair, one challenge
is to ensure that the MDS property still holds even after
iterative repairs. This is in contrast to regenerating the exact
lost chunks as in RAID-6, which guarantees the invariance of
the stored chunks. Here, we propose a two-phase checking
heuristic as follows. Suppose that the (r − 1)th repair is
successful, and we now consider how to operate the rth repair
for a permanent multi node failure (where r ≥ 1).

.

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 98

n n-1 n-2

Fig 3.Markov model for double fault tolerant codes

Some studies (e.g., [4]) address the security issues for

regenerating-coded data, while the security aspect of FMSR codes is
addressed in our prior work [30].

7.CONCLUSIONS

In this paper we proposed a multi node failure recovery using
network coding(FMSR) method. We used a proxy-based, multiple-cloud
storage system that practically addresses the reliability of today’s cloud

backup storage. This paper not only provides fault tolerance in storage,
but also allows cost-effective repair when a cloud permanently fails.
Recovery from multimode failure takes place only if the following
condition is met:
M=N-2 (N:number of nodes & M:number of failure nodes) .

we proposed theoretically functional minimum storage
regenerating (FMSR) codes, which regenerates new parity chunks
during repair subject to the required degree of data redundancy. Our

FMSR code implementation eliminates the encoding requirement of
storage nodes (or cloud) during repair, while ensuring that the new set of
stored chunks after each round of repair preserves the required fault
tolerance. This paper shows the effectiveness of FMSR codes in the
cloud backup usage, in terms of monetary costs and response times.

8. FUTURE WORK
FMSR code implementation has been proved in the recent

papers[31] along with its correctness. Now we point out some of the
issues of the existing design of FMSR codes, and we make them as
future work.
 While double-fault tolerance is the default setting of today’s
enterprise storage systems (e.g., 3-way replication in GFS [32]), it is
unclear how to generalize FMSR codes for different (n, k) values. FMSR
code used in[4] tells us about single node failure recovery. In this paper
we discussed about multimode failure where M=N-2, but it is interesting
to study if all the nodes in a cloud fail simultaneously. This can be posed

as a future work . while single-node failures are the most common
failure patterns in practical cloud storage systems [31], it is interesting to
study how to generalize FMSR codes to support efficient repairs of
concurrent node failures.
 In FMSR codes, we always download the same amount of
original data by connecting to any k nodes . while in traditional RAID-6
codes, the original amount of data is retrieved to recover the lost data.
Thus, FMSR codes and traditional RAID-6 codes retrieve the same

amount of data in degraded reads, while FMSR codes have higher
computational overhead in decoding.

 ACKNOWLEDGMENTS

This work is supported by JSS Academy of technical education. I am
grateful for my institution.

MTTDL is solved via the Markov model. Figure 3 shows the
Markov model for double-fault tolerant codes (i.e., k = n − 2), in which
state i (where i = 0, 1, 2, 3) denotes the number of failed nodes in a
storage system. State 3 means that there are more than two failed nodes
and the data is permanently lost. We compute MTTDL as the expected
time to move from state 0 (i.e., all nodes are normal) to state 3.

6. R ELATED WORK

Multiple-cloud storage. There are several systems proposed

for multiple-cloud storage. NCCloud[4] provides node recovery for
single node failure. NCCloud excludes the failed cloud in repair, Where
as HAIL [10] provides integrity and availability guarantees for stored
data. RACS [1] uses erasure coding to mitigate vendor lock-ins when
switching cloud vendors. It retrieves data from the cloud that is about to
fail and moves the data to the new cloud. Unlike RACS, DEPSKY [10]

addresses Byzantine fault tolerance by combining encryption and
erasure coding for stored data. All the above systems are built on erasure
codes to provide fault tolerance, in this paper we are proposing multi
node failure recovery using FMSR codes with an emphasis on both fault
tolerance and storage repair.

Minimizing I/Os. Several studies propose efficient single-node
failure recovery schemes that minimize the amount of data read (or I/Os)
for XOR-based erasure codes. For example optimal recovery for specific

RAID-6 codes reduces the amount of data read by up to around 25%
(compared to conventional repair that downloads the amount of original
data) for any number of nodes. Note that our FMSR codes can achieve
25% saving when the number of nodes is four, and up to 50% saving if
the number of nodes increases. Authors of [35] propose an enumeration-
based approach to search for an optimal recovery solution for arbitrary
XOR-based erasure codes. Efficient recovery is recently addressed in
commercial cloud storage systems. For example, new constructions of

non-MDS erasure codes designed for efficient recovery are proposed for
Azure [29]. The codes used in [31], [53] trade storage overhead for
performance, and are mainly designed for data-intensive computing. Our
work targets the cloud backup applications.

Regenerating codes will minimize the network traffic using
network coding and it also reduces the repair traffic among storage
nodes. Some studies[4] addresses the security issues for regenerating
codes in case of single failure recovery. Whereas we proposed in this
paper on multinode failure recovery(,which accounts for the majority of

failures in cloud storage systems [31].

0

1

2 3

IJITE Vol.03 Issue-02, (February, 2015) ISSN: 2321-1776
Impact Factor- 3.570

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering
 http://www.ijmr.net.in email id- irjmss@gmail.com Page 99

REFERENCES

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A

 Case for Cloud Storage Diversity. In Proc. of ACM SoCC, 2010.
[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
 Information Flow. IEEE Trans. on Information Theory,
 6(4):1204–1216, Jul 2000.
[3] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar, Fellow, IEEE
 Optimal exact regenerating Storage at the MSR and MBR Points
 Via a Product-Matrix Construction” VOL. 57, NO. 8, AUGUST
 2011.
[4] NCCloud:” A network coding based storage system in a cloud of c

 clouds”, Henry C. H. Chen, Yuchong Hu, Patrick P. C. Lee, and
 Yang Tang, Jan 2014
[5] “Remote Data Checking for Network Coding-based”,by Bo Chen,
 Reza Curtmola Department of Computer Science New Jersey
 Institute of Technology {bc47,crix}@njit.edu
[6] “Cooperative Recovery of Distributed Storage Systems from
 Multiple Losses with Network Coding”, Yuchong Hu, Yinlong Xu,
 Xiaozhao Wang, Cheng Zhan and Pei Li.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
 winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
 “A View of Cloud Computing”. Communications of the ACM,
 53(4):50–58, 2010.
[8] “ A survey on network codes for distributed storage,” IEEE ,vol
 99,no 3,mar2011
[9] Network Coding for Distributed Storage Systems Alexandros G.
 Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin Wainwright

 And Kannan Ramchandran,IEEE trans,sep 2010
[10] DEPSKY: Dependable and Secure Storage in a loud-of-Clouds.In
 Proc. of ACM EuroSys, 2011. K. D. Bowers, A. Juels, and A.
 Oprea. HAIL: A High-Availability and Integrity Layer for Cloud
 Storage. In Proc. of ACM CCS, 2009.
[11] Business Insider. Amazon’s Cloud Crash Disaster Permanently
 Destroyed Many Customers’ 2011.
 data.http://www.businessinsider.com/amazon-lost-data-2011-4/,

 Apr.
[12] H.Blodget, “Amazon’s cloud crash disaster permanently destroyed
 many customers data,”,Apr 2011.
[13] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman,
 “Improved low-density parity check codes using irregular graphs,”
 IEEE Trans. Info. Theory, vol. 47, pp. 585–598, February 2001.
 [14] M. Luby, “LT codes,” Proc. IEEE Foundations of Computer
 Science (FOCS), 2002.
[15] A. Shokrollahi, “Raptor codes,” IEEE Trans. on Information

 Theory, vol. 52, pp. 2551–2567, June 2006
[16] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An
 efficient scheme for tolerating double disk failures,” IEEE Trans.
 On Computing, vol. 44, pp. 192–202, February 1995.
[17] L. Xu and J. Bruck, “X-code: MDS array codes with optimal
 encoding,” IEEE Trans. on Information Theory, vol. 45, pp.

 272–276, January 1999

.[18] C. Huang and L. Xu, “STAR: An efficient coding scheme for
 correcting triple storage node failures,” in FAST-2005: 4th
 Usenix Conference on File and Storage Technologies, (San
 Francisco, CA), December 2005.

19] J. L. Hafner, “WEAVER codes: Highly fault tolerant erasure
 codes for storage systems,” in FAST-2005: 4th Usenix Conference
 on File and Storage Technologies, (San Francisco, CA),
[20] J. S. Plank, “Erasure codes for storage applications,” in Tutorial,
 FAST-2005: 4th Usenix Conference on File and Storage
 technologies,(San Francisco, CA), December 2005. [online]
 http://www.cs.utk.edu/ plank/plank/papers/FAST-2005.html.
[21] Analysis and Construction of Functional Regenerating Codes

 with Uncoded Repair for Distributed Storage Systems Yuchong
 Hu†,Patrick P. C. Lee‡, and Kenneth W. Shum††Institute of
 Network Coding, The Chinese University of Hong Kong
 ‡Department of Computer Science and Engineering, Jan 2013.
[22] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang. NCCloud:” Applying

 Network Coding for the Storage Repair in a Cloud-of-Clouds”. In Proc. of

 FAST, 2012.

[23] I. Reed and G. Solomon. Polynomial Codes over Certain Finite
 Fields. Journal of the Society for Industrial and Applied
 Mathematics, 8(2):300–304, 1960.
 [24] C. Suh and K. Ramchandran. Exact-Repair MDS Code Theory,

 Construction using Interference Alignment. IEEE Trans. on
 Information 57(3):1425–1442, Mar 2011.
[25] H,C,H Chen and P. P. C. Lee. Enabling Data Integrity Protection
 in Regenerating-Coding-Based Cloud Storage. In Proc. of IEEE
 SRDS, 2012.
[26] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-
 Tolerance in RAID-like Systems. Software-Practice&Experience,
 27(9):995–1012, Sep 1997.

[27] M. O. Rabin. Efficient Dispersal of Information for Security,
 Load Balancing, and Fault Tolerance. Journal of the ACM,
 36(2):335–348, Apr 1989.
[28] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L.
 Barroso, C. Grimes, and S. Quinlan. Availability in Globally
 Distributed Storage Systems. In Proc. of USENIX OSDI, 2010.
[29] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J.
 Li, and S. Yekhanin. Erasure Coding in Windows Azure Storage.
 In Proc. of USENIX ATC, 2012.

[30] P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ram-chandran.
 Network Coding for Distributed Storage Systems. IEEE Trans. on
 Information Theory, 56(9):4539–4551, Sep 2010.

