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ALGEBRAIC AND ANALYTIC PROPERTIES OF HR(P)  

*Dr Meenakshi Darolia 

 

In this paper, first we give the definition of R-norm information measure and then 

discuss the algebraic and analytic properties of the R–norm information measure

( )PH R  and also it will be summarized in the following two theorems.  

First we introduce some notations for convenience. We shall often refer to the set 

of positive real numbers, not equal to 1. We denote this set by R+   with 

}1,0;{ ≠>=+
RRRR  

We also define   �n  as  the set of all n-ary  probability distributions P = ( p1, p2 , 

p3…., pn ) which satisfy the conditions: 
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DEFINITION:  The R-norm information of the distribution P is defined for R � R
+
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The R-norm  information  measure (2.1) is a real function  +→∆ Rn   defined on  

n∆  where 2≥n  and   R
+
  is  the set  of  positive real  numbers .This  measure  is 

different  from Shannon’s entropy, Renyi and Havrda and Charvat and Daroczy . 

ALGEBRAIC AND ANALYTIC PROPERTIES OF HR(P) : 

The algebraic and analytic properties of the R–norm information measure ( )PH R   

will be summarized in the following two theorems. First we consider the algebraic 

properties of the R-norm information measure. 

Theorem 1: The R-norm information measure HR(P) has the following  

Algebraic properties:  

1. ( ) ( )nRR pppHPH ,...,, 21=  is  a symmetric function of ( )nppp ,...,, 21 . 

2. ( )PH R  is no-expansible  i.e. ( ) ( )
021021 ,...,,0,,...,, nRnR pppHpppH =  

3. ( )PH R  is decisive i.e. ( ) ( ) 01,00,1 == RR HH . 

4. ( )PH R  is non-recursive. 

5. ( )PH R  is pseudo–additive,  i.e. if P and Q are independent then  

    ( ) ( ) ( ) ( ) ( )QHPH
R

R
QHPHQPH RRRRR

1
,

−
−+=    i.e. ( )PH R  is non-additive. 
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Proof:  

(1) To prove  ( ) ( )nRR pppHPH ,...,, 21=  is a symmetric function of  p1 , p2……., pn . 

By definition (2.1), we have 
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 is a symmetric relation in pi’s.  

i.e.    p1
R  

+ P2
R
+……+ pn

R
 is same if  p1,

 
p2 ,

 
……,pn  are changed in cyclic order. 
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 is a symmetric function. 

Hence completes the proof. 

(2) To prove ( ) ( )
021021 ,...,,0,,...,, nRnR pppHpppH =  

 To prove this let us consider 

( ) =0,,...,,
021 nR pppH    [ ] �
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                                ( )
021 ,...,, nR pppH=   

(3)  To prove ( )PH R  is  decisive  i.e. ( ) ( ) 01,00,1 == RR HH . 

  By definition, we have 
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  Now If consider only two events,  
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            And if we take  

p1=1 , p2=0 ,then (2.3) becomes 

    ( ) =PH R ( ) [ ] o
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   ( ) 00,1 =� RH  

 Similarly we can proof that ( ) 01,0 =RH  

(4)  To prove ( )PHR  is non-recursive, we have to prove that 

         ( ) ( ) ( )nRRnR pppH
pp
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 For this first we consider 
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Multiply both sides by )( 21 pp + in (2.4), we get  
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By combining 2, we have 
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Thus ( )nR ppppH ..,.,,, 321
 is non-recursive. 

(5) To prove ( ) ( ) ( ) ( ) ( )QHPH
R

R
QHPHQPH RRRRR

1
,

−
−+=     

 i.e. ( )PH R  is non-additive  

Proof:  Let nAAA ...,,, 21  and mBBB ...,,, 21  be the two sets of events associated with 

probability distributions nP ∆∈  and mQ ∆∈ .We denote the probability of the joint 

occurrence of events  ( )niAi ...,,2,1==  and ( )mjB j ...,,2,1==  on ( )
ji BAp ∩ . 

Then the R-norm information is given by  
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Since the events   considered   here are stochastically independent therefore, We 
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Theorem 2: Let ( ) ( )nRR pppHPH ..,.,, 21=  be the R-norm information measure.  

Then for nP ∆∈  and +∈ RR  we find 

     (1) ( )PH R  Non-negative. 

     (2) ( ) ( ) 00,...,0,0,1 =≥ RR HPH . 
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  (4)     ( )PH R  is a monotonic function of P. 

(5)     ( )PH R  is continuous at +∈ RR . 

(6)     ( )PH R  is stable in nipi ,...,2,1, = . 

(7)     ( )PH R  is small for small probabilities. 

(8)     ( )PH R  is a concave function for all ip . 

(9)      ( ) iR
R

pPH .max1lim −=
∞→

.  

Proof: 

(1)  To prove that ( )PH R  > 0, we consider the following two cases: 
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 Multiplying both sides of (2.9) by 
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we get 
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Hence we conclude that ( )PH R  is non- negative R∀ € R
+
 

(2) To prove    ( ) 00,0,0,0,0,1 =RH  

i.e.  if one of the probability is equal to 1 and all  others are equal to zero, then 
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Then by Lagrange multipliers, we have 
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Equality holds iff  pi=1/n  for all  i=1,2,……,n . 

Substituting the results obtained in into definition and noting that R/R-1>0 for R > 

1 and   R/R-1< 0 for 0 < R <1 completes the property (3)Here it is noted that the 

R-norm information measure is maximal if all probabilities are equal and minimal 

if one probability is equal to unity and all others are equal to zero. 
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 From (2.20), we have   
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(6)  ( )pH R  is stable in nipi ,...,2,1, = . 
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Together with (2.21), it follows that HR(p) is  stable  in  pi.   
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This proves that ( )pH R  is small for small probabilities. 

(8)To prove ( )pH R  concave first we define the concave function.  

DEFINITION: A function f over a set S is said to be concave if for all choices of 
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Here we consider random variable x taking its values in the set S and r probability 

distributions over S on follows: 

( ) ( ) ( ){ } ( ) ( ) 1,0:,...,
1

1 =≥= �
=

ik

m

i

ikmkkk xpxpxpxpxP ,k = 1, 2,........,r 

Let us define another probability distribution over S  

   ( ) ( ) ( ){ } sixpxpxP m
′∀∃= 0100 ,...,  

   ( ) ( )ikk

r

k

i xpxP λ�
=

=
1

0 , where kλ ′s are non-negative scalars satisfying   1
1

=�
=

k

r

k

λ  

then We have                ( ) ( ) ( ) 10,0

1

≠>−= �
=

RPHPHD RkRk

r

k

λ  

 ( )PH R  will be concave if D is less than zero for R( > 0) ≠ 1.  So we consider 

     ( ) ( )0

1

PHPHD RkRk

r

k

−= �
=

λ  



IJITE            Vol.01 Issue-07, (December, 2013)        ISSN: 2321–1776�

 

International Journal in IT and Engineering   

                                                 http://www.ijmr.net� ����

 

     D ( )
1

1

1

11 −
�
�
�

�

�

�
�
�

�

�

�
�
�

�
�
�

−= ��
== R

R
xp

R

i

R

k

m

i

k

r

k

λ ( )
�
�
�

�

�

�
�
�

�

�

�
�
�

�
�
�

−
−

− �
=

R

i

R
m

i

xp
R

R
1

0

1

1
1

 

     D ( ) ( )
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
	



�
�


−

�
�
�

�

�
�
�

�
�
	



�
�



−
= ����

====

R

i

R

k

m

i

k

r

k

RR

ikk

r

k

m

i

xpxp
R

R

1

11

1

111
λλ                 

Now using the inequality t

kk

r

k

t

kk

r

k

xaxa ��
=

<

>

=
�
�

�
�
�

�

11

 according as 1
>

<t , we have 

 ( ) ( )�
�

�
�
�

�
�
�

�
�
�

�
��

=
<

>

=

i

R

kk

r

k

R

ikk

r

k

xpxp λλ
11

 According as 1
>

<R .Therefore  

 ( ) ��
	



��
�


��

�
�
�

�

�
�
�

�
�
	



�
�


��
	



��
�



==
<

>

==

�� i
x

R

k
P

k

r

k

m

i

R

ikk

r

k

m

i

xp λλ
1111

  according  as 1
>

<
R , 

 ( ) ( )
R

i

R

k

m

i

k

r

k

RR

ikk

r

k

m

i

xpxpD

1

11

1

11

1 �
�

�
�
�

�
�
	



�
�



�
�
�

�

�
�
�

�
�
	



�
�


= ����

==
<

>

==

λλ  according as 1
>

<R .  (2.24) 

Moreover, 

  ( ) ( ) 2

1

11

1

11

1

Dxpxp
R

i

R

k

m

i

k

r

k

R

i

R

k

m

i

k

r

k

=

�
�
�

�

�

�
�
�

�

�

�
	



�
�


�
�

�
�
�

�
�
	



�
�


����

==
<

>

==

λλ    according as 1
>

<R . (2.25) 

Thus 12 DD
>

<  according as 1
>

<R , which implies that D < 0 in view of the sign of    

   
1−R

R
 according as 1

>

<R . This proved that ( )PH R  is concave function P 

(9) For simplicity of notation we set maxi ki pp = ,   Assuming n0 =1,2,…… 
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By taking limit for R → ∞, on each side of (2.29), we obtain 
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          i.e.   ( ) iR
R

pPH .max1lim −=
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  This completes the proof of theorem 2.  

Property (9) is of particular interest since it provides us with a direct interpretation 

of the value of R which can be chosen. It shows that for increasing R, the 

probability, say kp , which has the largest value tends to dominate the R-norm 

information of the distribution P. Therefore the R-norm information for large 

values of R seems appropriate for those applications in which we are mainly 
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interested in events with large probability   It is interest to relate the R-norm 

information to the information of order α  and of type β  and Shannon’s 

information measure .As may be expected this depends on the values of R, α  and 

β  

Theorem: Let ( )pHα  be the information of order α [], and )( pH β   the information 

of type β  Havedra and Charvat, 1967; Daroczy, 1970) .Then for  

R=β  It holds that 
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discuss the most interesting property of the R-norm information measure  
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Then by L’Hospital Rule, we have 
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