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Abstract

The object of this note is to characterize infinite matrices between some
sequence spaces and the generalized set of entire sequences. The
investigations reveal that the sets I and cp(1/k) are essentially the same.

Their generalized classes, (c3(p,s),:M(p))and (I%(p,s):r(p)) are
characterized.
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1. Introduction

1.1 Matrix transformations

Let A = (a,;) be an infinite matrix of complex numbers @, (1, k =1,2,...) and X.¥ be
two nonempty subset of the space w of all complex sequences. The matrix 4 is said to define a
matrix transformation from X into ¥ and write 4 : X =Y if for every x = (x3) € X and every

integer 1 we have
A (x) =¥ anx

If the sequence Ax = {An(x}} exists, then it is called the transformation of x by the matrix A.
Further, 4 € (X,Y) if and only if 4,, € X for all Ax €Y, whenever x € X; where the pair (X,¥)
denotes the class of matrices A. The determination of the necessary and sufficient conditions for a
matrix 4 = (@,z) to be in the class (X,¥) for varying sequence spaces X and ¥ has been the focal

point of many researchers.
1.2 Some new sequence spaces: Definitions and notations

Take p = (py), Pr = 0 for all k and let g = {gy)be any bounded sequence. Define any

fixed sequence of non — zero complex humbers ¥ = (1) such that
limy ooinf | v, |Y* =1, (0 <5 < =),
The following sequence spaces are relevant in this work:

(@) Tp) ={x={x): | k! xp |7 =0, as k — ==, This is a linear metric space under the metric
topology generated by the paranorm, (f) = supg | k! x; |9%™ (see [2]).
(b) 1*(p,5) = {x = (xy) : suppk™ | xpvy |PX < ==, 5 = 0 }. This space is paranormed by

h(x) = Tk~ xvy [PR)M

(c) calps) ={x = (xy. k™ xv [Pk = 0, 5 = 0}, paranormed by
g(x) = sup, (k™1 | xpvy, [PE)YM
where,
H = supgpy and M = max(1, H), see [1].

If E is a set of complex sequences ¥ = (x.) then E™ will denote the generalized K&the- Toeplitz
dual of E defined by

Et={a= (ay) Ew: Xy_,a,% converges ¥V x € E}

If E is a set of complex sequences x = {x.) then E® will denote the - dual of E defined by
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E*={a= (ap) Ew: Ny | apxy| < =2, Vx € E(see[3])

Further, if E C @, and E is a K&the space, then E is solid; and if E is solid then E® = EE = EY
called the @—, § — and ¥ — duals of E, respectively. That E is solid or total means when x € E and
| vie | = x|, Yk EN together imply ¥ € E, (see [4] and [5]).

Let X O @ be a BK- space. Then there is a linear one-to-one mapping T : X¥ = X*; we denote
this by saying X* D X*. @ is a set of finite sequences and X* the continuous dual of X; while a BK-
space is a vector space whose elements are complex sequences x = (X1 )x=g and which is also a
Banach space (that is, normed and complete) with continuous coordinates (thatis, || x™ —x ||z — D

implies | x™ — x| = 0 for each k, as n = =), (see [6] and [7])

2. Some known results

The following known results play vital role in our main results, they amount to computing
&t — and continuous duals of the sequence spaces 1*(p,s) and Cgfn s5).

Lemma 1 (Lemma 2.1, [2]): Let 0 < py = supy P < == Then
(i) (cgs))*=M5p,s),
where,
My(p,s) = Uyse{a=(a) €w: Tyf gyt [K/PRN-YPk < o=, 5 = 0]
(i)  (ecg(p.s))* isisomorphic to Mj(p,s)
Lemma 2 (Lemma 2.2 [2]): (i) If 0 < py = supy < ==andp; *+ g5 =1,k =1,2, ...Then
(i) @*(@.5))==M"(p,s),
(i) (1¥(p,s))* is isomorphic to M*(p, 5),
where,

M¥(p,s)={a=(a,) Ew: X, | akv,:i |qkk5':‘”f‘13'N“”ﬂ“?’?f < oo,5 = (]

3. Main Results

In what follows we prove the following theorems:
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Theorem A: Let 0 < p < supy < ==andp, '+ g, =1, k=12, ....Then4 € (cX(p,s) : T(p))if
and only if

(T | apvyt | M/Peks/o)™ 5 0,asm 502 M >1, MEN (1)
Proof: For sufficiency, since x € £Z(p,s), there exists M = 1 such that
| vyexy | < M ~/PRSPR Wk,
Let (1) hold, then for a given £ = 0, there exists an integer 1 such that
MY | apv?| M‘*“?’?fkﬁ'*“?’?f}qn < gV n>ng (2)
Now,
(n!A, ()9 = (n! X a5
= (! iy (@mvy vy Ta)
< (1 Ty |amevy Y kSPRM 2P an
—+0asn — ==forn = ng (by (1)
Necessity: If (1) does not hold, then there exist subsequences of (1) such that
(! Toney | @t 1| kPR M~LPK)In = g whenn — == (3)
Since 4 € (cZ(p,5) : T(p)), then the sequence A,, = (@, )req € (cZ{p, 5))* So by Lemma (1)
Sy | Qi 1| kPRM Y Pkeo, for M > 1 (4)
Since x = e* € (cX(p,5), A,, = (@) € Mp), so that,
(n!|@nuvy 119 = Ay ¥ nand for each fixed k (5)

Let us construct a sequence (x) € {(cZ(p,5) and show that the corresponding sequence

(A,,) & r(p). This will amount to provision that the condition is necessary.
By (3)n =14 and k& = g1 can be chosen such that
(ny! Bz | @ vy | (M + 1)~ YPRs/Pr)an: = 1 (6)
After fixing 11 by (4) we choose k& = k4 = g4 such that
(11! T 21| @ncvie | (M + 1) "YPkfco/Pi)one < (7)

Taking for all 11, defined by
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sgn|a, vy )M+ 1) "VPkp k5P foralln,and 1 = k = ky
sgn| vy M+ 1)7YPk vy k5P foralln,and kjoy =k =k, j =2,3, ... (®)

.'x.'k=

so that (x) € (c%(p,5) and
(M+i)Vek<(M+i—1)"1pk (9)
Thus, using (6), (9) and (7), we should have
(ny)!] Ay, 1) = (ny! |E:';l(ﬂn._kf’;:i}fkak|}q“‘- — (! | Bty s 1(@n vy v )3
2 (ny!| Tty (@i ) (M + 1) 72k fesloie [)ns —
(3! | S 1 (@nyevic ™) (M +2)=Y/rk ool [yns
> 1—=
Thus, from (5) and (9), we must have for all 11,
(1! | Ty (@ v VM + D72k /2 )35 = (! | B2y (@ gevye V) (M) 7Yk jesfoie ) 3
= Cpyi
where,
Crey = Tigmy Ar (10)
By (3) n = nz > 1y and g2 = k4 can be chosen such that
(! 1 B2 (an vy DM + 2) 1Pk /P )ma > 2 += ¢, (11)
Having fixed Nz, by (4) choose k& = k2 = g4 such that
(ny! |Ef=kz+1(ﬂn._kffk_1}(ﬂ:! |E::ik,_+1(an5kt’k_1}t’kxk [z} <2 (12)
()| An, )7 = (2! | B2 44 (@npevic Dt DT — (2! | D2y (@ v i )T
—(n! |Er=k5+1ﬂnzk Vx| )T
= (np! | Tty o4 (@t (M + 2) 3P fes/pic) o
— (2! | T f(@gieviy ) (M + 1) 727k /P 3ns
—(n2! | Bimge 21 Qg (M + 3)"YPk f5/Pk )2 [by (8)]

=2— £ [by(9), (10), (11), (12)].
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Continuously proceeding in this manner, we can choose n; = n;_4 and gq; == k;_4 by (3) such that

(nd IS (@ DM + ) ~MPk gsfp)an = § 4 ¢
i k=ki_g+1\nik Yk ki_g

Therefore, for fixed 11;, we can choose &; = gq; by (4) such that
(n:! | B 1(@ns v DM + ) 7VPE) I < g
So, as above by the use of (8), (9) and (10) it can shown that
! Ap, N> i e

But £ was arbitrarily given so that (n;!| 4, |)% — == as n = ==. Hence the sequence (4,,) & Ip).

This proves that (1) is a necessity.

Theorem B: Let 0 < pp = supy < =andp; ' +q; =1, k=12, ....Then A€ ([®(p,5) : I'(p)) if
and only if

(n!¥, | i 'r:’;.:l o ks':q?f‘l}N‘W“"”f}qn — 0,asn = == uniformly in k, (13)
where,
Pr=1 and Py -+ g = 1.
Proof: Sufficiency— Since (x;) € 1¥(p,s), then there exists a finite M = 1 such that

D kT8 |xpv PE = M (14)

Let (13) hold good. Then given an £ > 0, there exists some integer N = N{£) independent of k such
that

(! | @t | k@ DN ar) T < 2y 2N (15)
Now,
(A ()T = (! Eimy | ape |9
= (! Bpey | @t © | o T )

|vg Loy | k5P Jes/Pk N~ kP an

= (! ] @t
= (n! -1 %% -1 sipk J-s/ok N—au/pi)
= (! | @uev [ g e | /PR s/ N a/ek)

4 (TR _ ;o g n
< (T | @i [ 10 g | RS0 N /o)
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T N .

(D |vgexy PR ) IVER

= (g/M)Yak . Man/Px
= £
Since the choice of € was arbitrary, it shows that 4 € r{p).
Necessity— If (13) does not hold, ten there exist subsequences of values of 1 such that
(n! %, | @, vt |‘7Ff kﬂ":t?k—l}N—I?kr"‘PF{}qn =g (16)

Since the matrix between, 1¥(p,s) and'(p) being BK — spaces, is continuous, the sequence
(@) € (1%(p,s))*. Hence, by Lemma 2,

D | BtV - |q;{ jc#(ak—1) N~k/Pk s convergent for N = 1 (17)
When x;, = 1and x; = 0 for j # k, x5 € I¥(p,s) so that 4,, = (@i )rey € T(p). Hence,
(n! | Qg ¥y |} an = 4, for all . and each fixed k (18)

This implies that

(n! | I |k5*f?’?f} an = A, where 4; = k*/Pk A, for each fixed k and for all 7.

Using (16), (17) and (18), we can construct a sequence (x;)€1¥(p,5) and show that
(4,.(x)) & r(p), then that will suffice to show the necessity of condition holds.

Now, by (16) choose n = 1y and & = g4 such that
(ny! 52| ap vt | ko@D N-aw/pi)an: > 1 (19)
Having fixed 11, by (17), for £ = 0, we can choose k1 > g such that
ny! Fooeo, an‘k'r:-'_i q;{k-"':‘“f‘ﬂhf“ﬂf*’?’?f My < g (20)
=y 41l Gng ke Py
the series being convergent.

Let x,, = | an,_kvk_l |q;;—

l.fcf':qk‘ﬂw‘?kf“ﬂksgn(an,_tﬂk_ll for 1 =k = k4, then
ks - Peta] _
! Ay, (D177 = (Ing! Bty (@ vy ) )0 —(ny! s - I B ) L

= ":|T11!Ei;l{ﬂnikv;ijxkks'iqk—i}w—qkfm |)9ns

—(ny! |Er=k‘_+1.[ﬂn‘_k 1";:1}xk kslax—1) jy—an/pk |}q'n-_ .
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Bz st | [PRETS)ImalPk
=1—¢
Since, (gx — 1) = gy /Py, from (17) we have for all 1,
(! Tpt| @n vt | ko@D N-aon)an < (ngt Tt | vt |K/PRN-axsoryailan
gk gk Tk
=AfF+ AT+ AT
_ 49k ax ak
= Ck._; Where Ck‘_ = Ai + A: + .. Ak‘ (22)

Now by (15), choose 12 = 13 and g2 = k4 such that

—1 | 9K F enn— —auia
(1! T ol Gngerie | ksl DN a/PR) I = 2 4 ¢ (23)

Having fixed Nz, by (16), it is possible to choose a k3 = g2 such that

(== ] - qh {2 — —r
(Tlg! Ek=k-_+1| Qe Ve 1 | Hki"ir{ ﬂN I?rc-"Frc}'?nz < £ (24)

-1 ||?F|!‘_1

Again, let x, = | Qi Vg kf':'?k‘ﬂhi’"??f*“?’?fsgn(anﬂk'r:-'k_i}J for 1=k = k4, then we

have

K - ks -
12! Ay (0172 2 (12! Ty s (@mprvic i D (2! | Bk (@sevic ) e

_(ﬂ.:!

-1
Ef=k-_+1{anzkvk }xkbqn‘
= (ny! :ik.+1 |ﬂn:-.k'f-°k_1 | k(@=L N —ai/pi)Ing

by -1
_(HE! Ek:llﬂ'?‘zzkt’k | |xk |}q.~12

-1
—(n;! EJT:J{5+1 | @i vy~ | |2 [) 372

> 2+ cp,— €, — (na! Mg eq | Qv - | jes(ar—1) N —aw/Pk ) Ina/ Tk .
(Ziipgen | X [P k™= )Ina/Pk
> 2— £, by (22), (23) and (24)
Proceeding in this manner, by (16), we can choose My, = My,—1 and G = Km—1 such that
(ﬂm!EE,{m_‘_H | @i vi L | Kot 1) N~ ak/Pi)anm

=m+(m—1c,, +{m—2)cy +-+cp, . (25)
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Having fixed 1, by (17), choose k4, = gm—1 such that

-1 ||??f

(ﬂm!Ef:ka |ﬂnmkff°k jeslar—D N -ai/pi)anm < g (26)

-1 ||'-TF|!'_1

Fina”y' take Xy = | ﬂ‘?‘!mk T kﬂ"-.qk_l}N_qmaﬁksgﬂ(anmkf_ﬂ;il for km—l =k = km,

then we should have,

[ ! Ap(x)|Im = = asn — oo

Hence, (A, (x)) € r{x), so that (13) is necessary.
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